ML Anthology
Authors
Search
About
Taylor, Gavin
15 publications
CVPR
2022
Robust Optimization as Data Augmentation for Large-Scale Graphs
Kezhi Kong
,
Guohao Li
,
Mucong Ding
,
Zuxuan Wu
,
Chen Zhu
,
Bernard Ghanem
,
Gavin Taylor
,
Tom Goldstein
ICLR
2021
LowKey: Leveraging Adversarial Attacks to Protect Social Media Users from Facial Recognition
Valeriia Cherepanova
,
Micah Goldblum
,
Harrison Foley
,
Shiyuan Duan
,
John P Dickerson
,
Gavin Taylor
,
Tom Goldstein
ICLR
2021
Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching
Jonas Geiping
,
Liam H Fowl
,
W. Ronny Huang
,
Wojciech Czaja
,
Gavin Taylor
,
Michael Moeller
,
Tom Goldstein
NeurIPS
2020
MetaPoison: Practical General-Purpose Clean-Label Data Poisoning
W. Ronny Huang
,
Jonas Geiping
,
Liam Fowl
,
Gavin Taylor
,
Tom Goldstein
NeurIPS
2019
Adversarial Training for Free!
Ali Shafahi
,
Mahyar Najibi
,
Mohammad Amin Ghiasi
,
Zheng Xu
,
John Dickerson
,
Christoph Studer
,
Larry S. Davis
,
Gavin Taylor
,
Tom Goldstein
ICML
2019
Transferable Clean-Label Poisoning Attacks on Deep Neural Nets
Chen Zhu
,
W. Ronny Huang
,
Hengduo Li
,
Gavin Taylor
,
Christoph Studer
,
Tom Goldstein
NeurIPS
2018
Visualizing the Loss Landscape of Neural Nets
Hao Li
,
Zheng Xu
,
Gavin Taylor
,
Christoph Studer
,
Tom Goldstein
ICML
2017
Adaptive Consensus ADMM for Distributed Optimization
Zheng Xu
,
Gavin Taylor
,
Hao Li
,
Mário A. T. Figueiredo
,
Xiaoming Yuan
,
Tom Goldstein
ICML
2016
Training Neural Networks Without Gradients: A Scalable ADMM Approach
Gavin Taylor
,
Ryan Burmeister
,
Zheng Xu
,
Bharat Singh
,
Ankit Patel
,
Tom Goldstein
AISTATS
2016
Unwrapping ADMM: Efficient Distributed Computing via Transpose Reduction
Tom Goldstein
,
Gavin Taylor
,
Kawika Barabin
,
Kent Sayre
ICML
2014
An Analysis of State-Relevance Weights and Sampling Distributions on L1-Regularized Approximate Linear Programming Approximation Accuracy
Gavin Taylor
,
Connor Geer
,
David Piekut
UAI
2012
Value Function Approximation in Noisy Environments Using Locally Smoothed Regularized Approximate Linear Programs
Gavin Taylor
,
Ronald Parr
ICML
2010
Feature Selection Using Regularization in Approximate Linear Programs for Markov Decision Processes
Marek Petrik
,
Gavin Taylor
,
Ronald Parr
,
Shlomo Zilberstein
ICML
2009
Kernelized Value Function Approximation for Reinforcement Learning
Gavin Taylor
,
Ronald Parr
ICML
2008
An Analysis of Linear Models, Linear Value-Function Approximation, and Feature Selection for Reinforcement Learning
Ronald Parr
,
Lihong Li
,
Gavin Taylor
,
Christopher Painter-Wakefield
,
Michael L. Littman