Teh, Yee W.

31 publications

NeurIPS 2021 BayesIMP: Uncertainty Quantification for Causal Data Fusion Siu Lun Chau, Jean-Francois Ton, Javier González, Yee W. Teh, Dino Sejdinovic
NeurIPS 2021 Group Equivariant Subsampling Jin Xu, Hyunjik Kim, Thomas Rainforth, Yee W. Teh
NeurIPS 2021 Neural Ensemble Search for Uncertainty Estimation and Dataset Shift Sheheryar Zaidi, Arber Zela, Thomas Elsken, Chris C Holmes, Frank Hutter, Yee W. Teh
NeurIPS 2021 On Contrastive Representations of Stochastic Processes Emile Mathieu, Adam Foster, Yee W. Teh
NeurIPS 2021 On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations Tim G. J. Rudner, Cong Lu, Michael A Osborne, Yarin Gal, Yee W. Teh
NeurIPS 2021 Powerpropagation: A Sparsity Inducing Weight Reparameterisation Jonathan Schwarz, Siddhant Jayakumar, Razvan Pascanu, Peter E Latham, Yee W. Teh
NeurIPS 2021 Vector-Valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels Michael Hutchinson, Alexander Terenin, Viacheslav Borovitskiy, So Takao, Yee W. Teh, Marc Deisenroth
NeurIPS 2012 Bayesian Nonparametric Models for Ranked Data Francois Caron, Yee W. Teh
NeurIPS 2012 Learning Label Trees for Probabilistic Modelling of Implicit Feedback Andriy Mnih, Yee W. Teh
NeurIPS 2012 MCMC for Continuous-Time Discrete-State Systems Vinayak Rao, Yee W. Teh
NeurIPS 2012 Scalable Imputation of Genetic Data with a Discrete Fragmentation-Coagulation Process Lloyd Elliott, Yee W. Teh
NeurIPS 2012 Searching for Objects Driven by Context Bogdan Alexe, Nicolas Heess, Yee W. Teh, Vittorio Ferrari
NeurIPS 2011 Gaussian Process Modulated Renewal Processes Yee W. Teh, Vinayak Rao
NeurIPS 2011 Modelling Genetic Variations Using Fragmentation-Coagulation Processes Yee W. Teh, Charles Blundell, Lloyd Elliott
NeurIPS 2010 Improvements to the Sequence Memoizer Jan Gasthaus, Yee W. Teh
NeurIPS 2009 Indian Buffet Processes with Power-Law Behavior Yee W. Teh, Dilan Gorur
NeurIPS 2009 Spatial Normalized Gamma Processes Vinayak Rao, Yee W. Teh
NeurIPS 2008 A Mixture Model for the Evolution of Gene Expression in Non-Homogeneous Datasets Gerald Quon, Yee W. Teh, Esther Chan, Timothy Hughes, Michael Brudno, Quaid D. Morris
NeurIPS 2008 An Efficient Sequential Monte Carlo Algorithm for Coalescent Clustering Dilan Gorur, Yee W. Teh
NeurIPS 2008 Dependent Dirichlet Process Spike Sorting Jan Gasthaus, Frank Wood, Dilan Gorur, Yee W. Teh
NeurIPS 2008 The Infinite Factorial Hidden Markov Model Jurgen V. Gael, Yee W. Teh, Zoubin Ghahramani
NeurIPS 2008 The Mondrian Process Daniel M. Roy, Yee W. Teh
NeurIPS 2007 Bayesian Agglomerative Clustering with Coalescents Yee W. Teh, Hal Daume Iii, Daniel M. Roy
NeurIPS 2007 Collapsed Variational Inference for HDP Yee W. Teh, Kenichi Kurihara, Max Welling
NeurIPS 2007 Cooled and Relaxed Survey Propagation for MRFs Hai L. Chieu, Wee S. Lee, Yee W. Teh
NeurIPS 2006 A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation Yee W. Teh, David Newman, Max Welling
NeurIPS 2004 Making Latin Manuscripts Searchable Using gHMM's Jaety Edwards, Yee W. Teh, Roger Bock, Michael Maire, Grace Vesom, David A. Forsyth
NeurIPS 2004 Sharing Clusters Among Related Groups: Hierarchical Dirichlet Processes Yee W. Teh, Michael I. Jordan, Matthew J. Beal, David M. Blei
NeurIPS 2003 Linear Response for Approximate Inference Max Welling, Yee W. Teh
NeurIPS 2002 Automatic Alignment of Local Representations Yee W. Teh, Sam T. Roweis
NeurIPS 2001 The Unified Propagation and Scaling Algorithm Yee W. Teh, Max Welling