ML Anthology
Authors
Search
About
Thomas, Philip
15 publications
AISTATS
2023
Asymptotically Unbiased Off-Policy Policy Evaluation When Reusing Old Data in Nonstationary Environments
Vincent Liu
,
Yash Chandak
,
Philip Thomas
,
Martha White
ICML
2021
High Confidence Generalization for Reinforcement Learning
James Kostas
,
Yash Chandak
,
Scott M Jordan
,
Georgios Theocharous
,
Philip Thomas
ICML
2021
Posterior Value Functions: Hindsight Baselines for Policy Gradient Methods
Chris Nota
,
Philip Thomas
,
Bruno C. Da Silva
ICML
2021
Towards Practical Mean Bounds for Small Samples
My Phan
,
Philip Thomas
,
Erik Learned-Miller
ICML
2020
Asynchronous Coagent Networks
James Kostas
,
Chris Nota
,
Philip Thomas
ICML
2020
Evaluating the Performance of Reinforcement Learning Algorithms
Scott Jordan
,
Yash Chandak
,
Daniel Cohen
,
Mengxue Zhang
,
Philip Thomas
ICML
2020
Optimizing for the Future in Non-Stationary MDPs
Yash Chandak
,
Georgios Theocharous
,
Shiv Shankar
,
Martha White
,
Sridhar Mahadevan
,
Philip Thomas
ICML
2019
Concentration Inequalities for Conditional Value at Risk
Philip Thomas
,
Erik Learned-Miller
ICML
2019
Learning Action Representations for Reinforcement Learning
Yash Chandak
,
Georgios Theocharous
,
James Kostas
,
Scott Jordan
,
Philip Thomas
ICML
2018
Decoupling Gradient-like Learning Rules from Representations
Philip Thomas
,
Christoph Dann
,
Emma Brunskill
ICML
2016
Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning
Philip Thomas
,
Emma Brunskill
ICML
2016
Energetic Natural Gradient Descent
Philip Thomas
,
Bruno Castro Silva
,
Christoph Dann
,
Emma Brunskill
ICML
2015
High Confidence Policy Improvement
Philip Thomas
,
Georgios Theocharous
,
Mohammad Ghavamzadeh
ICML
2014
Bias in Natural Actor-Critic Algorithms
Philip Thomas
ICML
2014
GeNGA: A Generalization of Natural Gradient Ascent with Positive and Negative Convergence Results
Philip Thomas