Tibshirani, Ryan J.

20 publications

JMLR 2025 Integral Probability Metrics Meet Neural Networks: The Radon-Kolmogorov-Smirnov Test Seunghoon Paik, Michael Celentano, Alden Green, Ryan J. Tibshirani
JMLR 2025 Laplace Meets Moreau: Smooth Approximation to Infimal Convolutions Using Laplace's Method Ryan J. Tibshirani, Samy Wu Fung, Howard Heaton, Stanley Osher
NeurIPS 2023 Class-Conditional Conformal Prediction with Many Classes Tiffany Ding, Anastasios Angelopoulos, Stephen Bates, Michael I. Jordan, Ryan J Tibshirani
NeurIPS 2023 Conformal PID Control for Time Series Prediction Anastasios Angelopoulos, Emmanuel Candes, Ryan J Tibshirani
JMLR 2023 Flexible Model Aggregation for Quantile Regression Rasool Fakoor, Taesup Kim, Jonas Mueller, Alexander J. Smola, Ryan J. Tibshirani
FnTML 2022 Divided Differences, Falling Factorials, and Discrete Splines: Another Look at Trend Filtering and Related Problems Ryan J. Tibshirani
JMLR 2021 Statistical Guarantees for Local Spectral Clustering on Random Neighborhood Graphs Alden Green, Sivaraman Balakrishnan, Ryan J. Tibshirani
AISTATS 2019 A Continuous-Time View of Early Stopping for Least Squares Regression Alnur Ali, J. Zico Kolter, Ryan J. Tibshirani
AISTATS 2019 A Higher-Order Kolmogorov-Smirnov Test Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Aaditya Ramdas, Ryan J. Tibshirani
NeurIPS 2019 Conformal Prediction Under Covariate Shift Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, Aaditya Ramdas
NeurIPS 2019 Kalman Filter, Sensor Fusion, and Constrained Regression: Equivalences and Insights Maria Jahja, David Farrow, Roni Rosenfeld, Ryan J Tibshirani
NeurIPS 2017 A Sharp Error Analysis for the Fused Lasso, with Application to Approximate Changepoint Screening Kevin Lin, James L Sharpnack, Alessandro Rinaldo, Ryan J Tibshirani
NeurIPS 2017 Dykstra's Algorithm, ADMM, and Coordinate Descent: Connections, Insights, and Extensions Ryan J Tibshirani
NeurIPS 2017 Higher-Order Total Variation Classes on Grids: Minimax Theory and Trend Filtering Methods Veeranjaneyulu Sadhanala, Yu-Xiang Wang, James L Sharpnack, Ryan J Tibshirani
AISTATS 2016 Graph Sparsification Approaches for Laplacian Smoothing Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Ryan J. Tibshirani
NeurIPS 2016 The Multiple Quantile Graphical Model Alnur Ali, J. Zico Kolter, Ryan J Tibshirani
NeurIPS 2016 Total Variation Classes Beyond 1d: Minimax Rates, and the Limitations of Linear Smoothers Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Ryan J Tibshirani
JMLR 2016 Trend Filtering on Graphs Yu-Xiang Wang, James Sharpnack, Alexander J. Smola, Ryan J. Tibshirani
JMLR 2015 A General Framework for Fast Stagewise Algorithms Ryan J. Tibshirani
AISTATS 2015 Trend Filtering on Graphs Yu-Xiang Wang, James Sharpnack, Alexander J. Smola, Ryan J. Tibshirani