Timbers, Finbarr

5 publications

AAAI 2024 Reward-Respecting Subtasks for Model-Based Reinforcement Learning (Abstract Reprint) Richard S. Sutton, Marlos C. Machado, G. Zacharias Holland, David Szepesvari, Finbarr Timbers, Brian Tanner, Adam White
IJCAI 2022 Approximate Exploitability: Learning a Best Response Finbarr Timbers, Nolan Bard, Edward Lockhart, Marc Lanctot, Martin Schmid, Neil Burch, Julian Schrittwieser, Thomas Hubert, Michael Bowling
AAAI 2021 Solving Common-Payoff Games with Approximate Policy Iteration Samuel Sokota, Edward Lockhart, Finbarr Timbers, Elnaz Davoodi, Ryan D'Orazio, Neil Burch, Martin Schmid, Michael Bowling, Marc Lanctot
ICML 2020 Fast Computation of Nash Equilibria in Imperfect Information Games Remi Munos, Julien Perolat, Jean-Baptiste Lespiau, Mark Rowland, Bart De Vylder, Marc Lanctot, Finbarr Timbers, Daniel Hennes, Shayegan Omidshafiei, Audrunas Gruslys, Mohammad Gheshlaghi Azar, Edward Lockhart, Karl Tuyls
IJCAI 2019 Computing Approximate Equilibria in Sequential Adversarial Games by Exploitability Descent Edward Lockhart, Marc Lanctot, Julien Pérolat, Jean-Baptiste Lespiau, Dustin Morrill, Finbarr Timbers, Karl Tuyls