Tiňo, Peter

19 publications

ICLRW 2025 A Topologically Guided Machine Learning Framework for Enhanced Fine-Mapping in Whole-Genome Bacterial Studies Tamsin Emily James, Peter Tino, Nicole E Wheeler
AAAI 2025 Universality of Real Minimal Complexity Reservoir Robert Simon Fong, Boyu Li, Peter Tino
JMLR 2024 Simple Cycle Reservoirs Are Universal Boyu Li, Robert Simon Fong, Peter Tino
ECML-PKDD 2021 Label-Assisted Memory Autoencoder for Unsupervised Out-of-Distribution Detection Shuyi Zhang, Chao Pan, Liyan Song, Xiaoyu Wu, Zheng Hu, Ke Pei, Peter Tino, Xin Yao
JMLR 2020 Dynamical Systems as Temporal Feature Spaces Peter Tino
AAAI 2019 Exploiting Synthetically Generated Data with Semi-Supervised Learning for Small and Imbalanced Datasets María Pérez-Ortiz, Peter Tiño, Rafal Mantiuk, César Hervás-Martínez
IJCAI 2015 Model Metric Co-Learning for Time Series Classification Huanhuan Chen, Fengzhen Tang, Peter Tiño, Anthony G. Cohn, Xin Yao
ECML-PKDD 2008 Multiple Manifolds Learning Framework Based on Hierarchical Mixture Density Model Xiaoxia Wang, Peter Tiño, Mark A. Fardal
IJCAI 2007 Metric Properties of Structured Data Visualizations Through Generative Probabilistic Modeling Peter Tiño, Nikolaos Gianniotis
ECML-PKDD 2006 A Kernel-Based Approach to Estimating Phase Shifts Between Irregularly Sampled Time Series: An Application to Gravitational Lenses Juan Carlos Cuevas-Tello, Peter Tiño, Somak Raychaudhury
JMLR 2005 Managing Diversity in Regression Ensembles Gavin Brown, Jeremy L. Wyatt, Peter Tiňo
NeCo 2003 Architectural Bias in Recurrent Neural Networks: Fractal Analysis Peter Tiño, Barbara Hammer
NeCo 2003 Recurrent Neural Networks with Small Weights Implement Definite Memory Machines Barbara Hammer, Peter Tiño
NeCo 2001 Attractive Periodic Sets in Discrete-Time Recurrent Networks (with Emphasis on Fixed-Point Stability and Bifurcations in Two-Neuron Networks) Peter Tiño, Bill G. Horne, C. Lee Giles
MLJ 2001 Predicting the Future of Discrete Sequences from Fractal Representations of the past Peter Tiño, Georg Dorffner
NeurIPS 1999 Building Predictive Models from Fractal Representations of Symbolic Sequences Peter Tiño, Georg Dorffner
NeurIPS 1999 Graded Grammaticality in Prediction Fractal Machines Shan Parfitt, Peter Tiño, Georg Dorffner
NeurIPS 1995 Learning Long-Term Dependencies Is Not as Difficult with NARX Networks Tsungnan Lin, Bill G. Horne, Peter Tiño, C. Lee Giles
NeCo 1995 Learning and Extracting Initial Mealy Automata with a Modular Neural Network Model Peter Tiño, Jozef Sajda