ML Anthology
Authors
Search
About
Tiomoko, Malik
10 publications
NeurIPS
2024
Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting
Romain Ilbert
,
Malik Tiomoko
,
Cosme Louart
,
Ambroise Odonnat
,
Vasilii Feofanov
,
Themis Palpanas
,
Ievgen Redko
NeurIPSW
2024
Enhancing Multivariate Time Series Forecasting via Multi-Task Learning and Random Matrix Theory
Romain Ilbert
,
Malik Tiomoko
,
Cosme Louart
,
Vasilii Feofanov
,
Themis Palpanas
,
Ievgen Redko
ICML
2024
Random Matrix Theory Improved Fréchet Mean of Symmetric Positive Definite Matrices
Florent Bouchard
,
Ammar Mian
,
Malik Tiomoko
,
Guillaume Ginolhac
,
Frederic Pascal
UAI
2023
Learning from Low Rank Tensor Data: A Random Tensor Theory Perspective
Mohamed El Amine Seddik
,
Malik Tiomoko
,
Alexis Decurninge
,
Maxim Panov
,
Maxime Gauillaud
ICLR
2023
Optimizing Spca-Based Continual Learning: A Theoretical Approach
Chunchun Yang
,
Malik Tiomoko
,
Zengfu Wang
ICML
2023
PCA-Based Multi-Task Learning: A Random Matrix Approach
Malik Tiomoko
,
Romain Couillet
,
Frederic Pascal
ICML
2023
Random Matrix Analysis to Balance Between Supervised and Unsupervised Learning Under the Low Density Separation Assumption
Vasilii Feofanov
,
Malik Tiomoko
,
Aladin Virmaux
ICML
2022
Deciphering Lasso-Based Classification Through a Large Dimensional Analysis of the Iterative Soft-Thresholding Algorithm
Malik Tiomoko
,
Ekkehard Schnoor
,
Mohamed El Amine Seddik
,
Igor Colin
,
Aladin Virmaux
ICLR
2021
Deciphering and Optimizing Multi-Task Learning: A Random Matrix Approach
Malik Tiomoko
,
Hafiz Tiomoko Ali
,
Romain Couillet
ICML
2019
Random Matrix Improved Covariance Estimation for a Large Class of Metrics
Malik Tiomoko
,
Romain Couillet
,
Florent Bouchard
,
Guillaume Ginolhac