ML Anthology
Authors
Search
About
Titsias, Michalis
17 publications
ICML
2025
Learning-Order Autoregressive Models with Application to Molecular Graph Generation
Zhe Wang
,
Jiaxin Shi
,
Nicolas Heess
,
Arthur Gretton
,
Michalis Titsias
ICML
2025
New Bounds for Sparse Variational Gaussian Processes
Michalis Titsias
NeurIPS
2025
Sparse Gaussian Processes: Structured Approximations and Power-EP Revisited
Thang D Bui
,
Michalis Titsias
ICLR
2024
Kalman Filter for Online Classification of Non-Stationary Data
Michalis Titsias
,
Alexandre Galashov
,
Amal Rannen-Triki
,
Razvan Pascanu
,
Yee Whye Teh
,
Jorg Bornschein
NeurIPSW
2023
Revisiting Dynamic Evaluation: Online Adaptation for Large Language Models
Amal Rannen-Triki
,
Jorg Bornschein
,
Razvan Pascanu
,
Alexandre Galashov
,
Michalis Titsias
,
Marcus Hutter
,
András György
,
Yee Whye Teh
NeurIPSW
2023
Stochastic Linear Dynamics in Parameters to Deal with Neural Networks Plasticity Loss
Alexandre Galashov
,
Michalis Titsias
,
Razvan Pascanu
,
Yee Whye Teh
,
Maneesh Sahani
AISTATS
2022
Double Control Variates for Gradient Estimation in Discrete Latent Variable Models
Michalis Titsias
,
Jiaxin Shi
ICLR
2022
Information-Theoretic Online Memory Selection for Continual Learning
Shengyang Sun
,
Daniele Calandriello
,
Huiyi Hu
,
Ang Li
,
Michalis Titsias
AISTATS
2020
Sparse Orthogonal Variational Inference for Gaussian Processes
Jiaxin Shi
,
Michalis Titsias
,
Andriy Mnih
ICML
2019
A Contrastive Divergence for Combining Variational Inference and MCMC
Francisco Ruiz
,
Michalis Titsias
AISTATS
2019
Augmented Ensemble MCMC Sampling in Factorial Hidden Markov Models
Kaspar Märtens
,
Michalis Titsias
,
Christopher Yau
NeurIPS
2019
Gradient-Based Adaptive Markov Chain Monte Carlo
Michalis Titsias
,
Petros Dellaportas
ICML
2018
Augment and Reduce: Stochastic Inference for Large Categorical Distributions
Francisco Ruiz
,
Michalis Titsias
,
Adji Bousso Dieng
,
David Blei
ICML
2014
Doubly Stochastic Variational Bayes for Non-Conjugate Inference
Michalis Titsias
,
Miguel Lázaro-Gredilla
AISTATS
2010
Bayesian Gaussian Process Latent Variable Model
Michalis Titsias
,
Neil D. Lawrence
AISTATS
2010
Efficient Multioutput Gaussian Processes Through Variational Inducing Kernels
Mauricio Álvarez
,
David Luengo
,
Michalis Titsias
,
Neil D. Lawrence
AISTATS
2009
Variational Learning of Inducing Variables in Sparse Gaussian Processes
Michalis Titsias