ML Anthology
Authors
Search
About
Titsias, Michalis K.
24 publications
NeurIPS
2024
Non-Stationary Learning of Neural Networks with Automatic Soft Parameter Reset
Alexandre Galashov
,
Michalis K. Titsias
,
András György
,
Clare Lyle
,
Razvan Pascanu
,
Yee Whye Teh
,
Maneesh Sahani
NeurIPS
2024
Simplified and Generalized Masked Diffusion for Discrete Data
Jiaxin Shi
,
Kehang Han
,
Zhe Wang
,
Arnaud Doucet
,
Michalis K. Titsias
NeurIPS
2023
Optimal Preconditioning and Fisher Adaptive Langevin Sampling
Michalis K. Titsias
NeurIPS
2022
Gradient Estimation with Discrete Stein Operators
Jiaxin Shi
,
Yuhao Zhou
,
Jessica Hwang
,
Michalis K. Titsias
,
Lester W. Mackey
NeurIPS
2021
Entropy-Based Adaptive Hamiltonian Monte Carlo
Marcel Hirt
,
Michalis K. Titsias
,
Petros Dellaportas
UAI
2021
Information Theoretic Meta Learning with Gaussian Processes
Michalis K. Titsias
,
Francisco J. R. Ruiz
,
Sotirios Nikoloutsopoulos
,
Alexandre Galashov
MLJ
2021
Large Scale Multi-Label Learning Using Gaussian Processes
Aristeidis Panos
,
Petros Dellaportas
,
Michalis K. Titsias
UAI
2021
Unbiased Gradient Estimation for Variational Auto-Encoders Using Coupled Markov Chains
Francisco J. R. Ruiz
,
Michalis K. Titsias
,
Taylan Cemgil
,
Arnaud Doucet
ICLR
2020
Functional Regularisation for Continual Learning with Gaussian Processes
Michalis K. Titsias
,
Jonathan Schwarz
,
Alexander G. de G. Matthews
,
Razvan Pascanu
,
Yee Whye Teh
AISTATS
2019
Unbiased Implicit Variational Inference
Michalis K. Titsias
,
Francisco Ruiz
ICML
2017
Bayesian Boolean Matrix Factorisation
Tammo Rukat
,
Chris C. Holmes
,
Michalis K. Titsias
,
Christopher Yau
UAI
2016
Overdispersed Black-Box Variational Inference
Francisco J. R. Ruiz
,
Michalis K. Titsias
,
David M. Blei
JMLR
2016
Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes
Andreas C. Damianou
,
Michalis K. Titsias
,
Neil D. Lawrence
ICML
2012
Manifold Relevance Determination
Andreas C. Damianou
,
Carl Henrik Ek
,
Michalis K. Titsias
,
Neil D. Lawrence
NeurIPS
2011
Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning
Michalis K. Titsias
,
Miguel Lázaro-Gredilla
NeurIPS
2011
Variational Gaussian Process Dynamical Systems
Andreas Damianou
,
Michalis K. Titsias
,
Neil D. Lawrence
ICML
2011
Variational Heteroscedastic Gaussian Process Regression
Miguel Lázaro-Gredilla
,
Michalis K. Titsias
NeurIPS
2008
Efficient Sampling for Gaussian Process Inference Using Control Variables
Neil D. Lawrence
,
Magnus Rattray
,
Michalis K. Titsias
NeurIPS
2007
The Infinite Gamma-Poisson Feature Model
Michalis K. Titsias
CVPR
2004
Fast Unsupervised Greedy Learning of Multiple Objects and Parts from Video
Michalis K. Titsias
,
Christopher K. I. Williams
CVPRW
2004
Fast Unsupervised Greedy Learning of Multiple Objects and Parts from Video
Michalis K. Titsias
,
Christopher K. I. Williams
NeCo
2004
Greedy Learning of Multiple Objects in Images Using Robust Statistics and Factorial Learning
Christopher K. I. Williams
,
Michalis K. Titsias
NeurIPS
2002
Learning About Multiple Objects in Images: Factorial Learning Without Factorial Search
Christopher K. I. Williams
,
Michalis K. Titsias
NeCo
2002
Mixture of Experts Classification Using a Hierarchical Mixture Model
Michalis K. Titsias
,
Aristidis Likas