Tommasi, Marc

19 publications

ICML 2025 Privacy Amplification Through Synthetic Data: Insights from Linear Regression Clément Pierquin, Aurélien Bellet, Marc Tommasi, Matthieu Boussard
ECML-PKDD 2025 TAMIS: Tailored Membership Inference Attacks on Synthetic Data Paul Andrey, Batiste Le Bars, Marc Tommasi
ICML 2024 Improved Stability and Generalization Guarantees of the Decentralized SGD Algorithm Batiste Le Bars, Aurélien Bellet, Marc Tommasi, Kevin Scaman, Giovanni Neglia
ICML 2024 Rényi Pufferfish Privacy: General Additive Noise Mechanisms and Privacy Amplification by Iteration via Shift Reduction Lemmas Clément Pierquin, Aurélien Bellet, Marc Tommasi, Matthieu Boussard
ICML 2023 Differential Privacy Has Bounded Impact on Fairness in Classification Paul Mangold, Michaël Perrot, Aurélien Bellet, Marc Tommasi
AISTATS 2023 High-Dimensional Private Empirical Risk Minimization by Greedy Coordinate Descent Paul Mangold, Aurélien Bellet, Joseph Salmon, Marc Tommasi
AISTATS 2023 Refined Convergence and Topology Learning for Decentralized SGD with Heterogeneous Data Batiste Le Bars, Aurélien Bellet, Marc Tommasi, Erick Lavoie, Anne-Marie Kermarrec
TMLR 2022 Collaborative Algorithms for Online Personalized Mean Estimation Mahsa Asadi, Aurélien Bellet, Odalric-Ambrym Maillard, Marc Tommasi
ICML 2022 Differentially Private Coordinate Descent for Composite Empirical Risk Minimization Paul Mangold, Aurélien Bellet, Joseph Salmon, Marc Tommasi
NeurIPS 2022 FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings Jean Ogier du Terrail, Samy-Safwan Ayed, Edwige Cyffers, Felix Grimberg, Chaoyang He, Regis Loeb, Paul Mangold, Tanguy Marchand, Othmane Marfoq, Erum Mushtaq, Boris Muzellec, Constantin Philippenko, Santiago Silva, Maria Teleńczuk, Shadi Albarqouni, Salman Avestimehr, Aurélien Bellet, Aymeric Dieuleveut, Martin Jaggi, Sai Praneeth Karimireddy, Marco Lorenzi, Giovanni Neglia, Marc Tommasi, Mathieu Andreux
NeurIPSW 2022 Refined Convergence and Topology Learning for Decentralized Optimization with Heterogeneous Data Batiste Le bars, Aurélien Bellet, Marc Tommasi, Erick Lavoie, Anne-marie Kermarrec
AISTATS 2020 Fully Decentralized Joint Learning of Personalized Models and Collaboration Graphs Valentina Zantedeschi, Aurélien Bellet, Marc Tommasi
JMLR 2020 Skill Rating for Multiplayer Games. Introducing Hypernode Graphs and Their Spectral Theory Thomas Ricatte, Rémi Gilleron, Marc Tommasi
AISTATS 2018 Personalized and Private Peer-to-Peer Machine Learning Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, Marc Tommasi
AISTATS 2017 Decentralized Collaborative Learning of Personalized Models over Networks Paul Vanhaesebrouck, Aurélien Bellet, Marc Tommasi
ECML-PKDD 2014 Fast Gaussian Pairwise Constrained Spectral Clustering David Chatel, Pascal Denis, Marc Tommasi
ECML-PKDD 2014 Hypernode Graphs for Spectral Learning on Binary Relations over Sets Thomas Ricatte, Rémi Gilleron, Marc Tommasi
NeurIPS 2012 Fiedler Random Fields: A Large-Scale Spectral Approach to Statistical Network Modeling Antonino Freno, Mikaela Keller, Marc Tommasi
UAI 2012 Spectral Estimation of Conditional Random Graph Models for Large-Scale Network Data Antonino Freno, Mikaela Keller, Gemma C. Garriga, Marc Tommasi