Torr, Philip
179 publications
TMLR
2026
The Landscape of Agentic Reinforcement Learning for LLMs: A Survey
Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou, Zhong-Zhi Li, Xiangyuan Xue, Yijiang Li, Yifan Zhou, Yang Chen, Chen Zhang, Yutao Fan, Zihu Wang, Songtao Huang, Francisco Piedrahita Velez, Yue Liao, Hongru Wang, Mengyue Yang, Heng Ji, Jun Wang, Shuicheng Yan, Philip Torr, Lei Bai NeurIPS
2025
Direct3D-S2: Gigascale 3D Generation Made Easy with Spatial Sparse Attention
Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Yikang Yang, Yajie Bao, Jiachen Qian, Siyu Zhu, Xun Cao, Philip Torr, Yao Yao NeurIPS
2025
Measuring What Matters: Construct Validity in Large Language Model Benchmarks
Andrew M. Bean, Ryan Othniel Kearns, Angelika Romanou, Franziska Sofia Hafner, Harry Mayne, Jan Batzner, Negar Foroutan, Chris Schmitz, Karolina Korgul, Hunar Batra, Oishi Deb, Emma Beharry, Cornelius Emde, Thomas Foster, Anna Gausen, María Grandury, Simeng Han, Valentin Hofmann, Lujain Ibrahim, Hazel Kim, Hannah Rose Kirk, Fangru Lin, Gabrielle Kaili-May Liu, Lennart Luettgau, Jabez Magomere, Jonathan Rystrøm, Anna Sotnikova, Yushi Yang, Yilun Zhao, Adel Bibi, Antoine Bosselut, Ronald Clark, Arman Cohan, Jakob Nicolaus Foerster, Yarin Gal, Scott A. Hale, Inioluwa Deborah Raji, Christopher Summerfield, Philip Torr, Cozmin Ududec, Luc Rocher, Adam Mahdi TMLR
2025
Reliable and Responsible Foundation Models
Xinyu Yang, Junlin Han, Rishi Bommasani, Jinqi Luo, Wenjie Qu, Wangchunshu Zhou, Adel Bibi, Xiyao Wang, Jaehong Yoon, Elias Stengel-Eskin, Shengbang Tong, Lingfeng Shen, Rafael Rafailov, Runjia Li, Zhaoyang Wang, Yiyang Zhou, Chenhang Cui, Yu Wang, Wenhao Zheng, Huichi Zhou, Jindong Gu, Zhaorun Chen, Peng Xia, Tony Lee, Thomas P Zollo, Vikash Sehwag, Jixuan Leng, Jiuhai Chen, Yuxin Wen, Huan Zhang, Zhun Deng, Linjun Zhang, Pavel Izmailov, Pang Wei Koh, Yulia Tsvetkov, Andrew Gordon Wilson, Jiaheng Zhang, James Zou, Cihang Xie, Hao Wang, Philip Torr, Julian McAuley, David Alvarez-Melis, Florian Tramèr, Kaidi Xu, Suman Jana, Chris Callison-Burch, Rene Vidal, Filippos Kokkinos, Mohit Bansal, Beidi Chen, Huaxiu Yao TMLR
2024
A Survey on Transferability of Adversarial Examples Across Deep Neural Networks
Jindong Gu, Xiaojun Jia, Pau de Jorge, Wenqian Yu, Xinwei Liu, Avery Ma, Yuan Xun, Anjun Hu, Ashkan Khakzar, Zhijiang Li, Xiaochun Cao, Philip Torr NeurIPSW
2024
CRAB: Cross-Platfrom Agent Benchmark for Multi-Modal Embodied Language Model Agents
Tianqi Xu, Linyao Chen, Dai-Jie Wu, Yanjun Chen, Zecheng Zhang, Xiang Yao, Zhiqiang Xie, Yongchao Chen, Shilong Liu, Bochen Qian, Philip Torr, Bernard Ghanem, Guohao Li ICMLW
2024
Can Editing LLMs Inject Harm?
Canyu Chen, Baixiang Huang, Zekun Li, Zhaorun Chen, Shiyang Lai, Xiongxiao Xu, Jia-Chen Gu, Jindong Gu, Huaxiu Yao, Chaowei Xiao, Xifeng Yan, William Yang Wang, Philip Torr, Dawn Song, Kai Shu ICMLW
2024
Can Editing LLMs Inject Harm?
Canyu Chen, Baixiang Huang, Zekun Li, Zhaorun Chen, Shiyang Lai, Xiongxiao Xu, Jia-Chen Gu, Jindong Gu, Huaxiu Yao, Chaowei Xiao, Xifeng Yan, William Yang Wang, Philip Torr, Dawn Song, Kai Shu NeurIPSW
2024
Can Editing LLMs Inject Harm?
Canyu Chen, Baixiang Huang, Zekun Li, Zhaorun Chen, Shiyang Lai, Xiongxiao Xu, Jia-Chen Gu, Jindong Gu, Huaxiu Yao, Chaowei Xiao, Xifeng Yan, William Yang Wang, Philip Torr, Dawn Song, Kai Shu TMLR
2024
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase, Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, Benjamin L. Edelman, Zhaowei Zhang, Mario Günther, Anton Korinek, Jose Hernandez-Orallo, Lewis Hammond, Eric J Bigelow, Alexander Pan, Lauro Langosco, Tomasz Korbak, Heidi Chenyu Zhang, Ruiqi Zhong, Sean O hEigeartaigh, Gabriel Recchia, Giulio Corsi, Alan Chan, Markus Anderljung, Lilian Edwards, Aleksandar Petrov, Christian Schroeder de Witt, Sumeet Ramesh Motwani, Yoshua Bengio, Danqi Chen, Philip Torr, Samuel Albanie, Tegan Maharaj, Jakob Nicolaus Foerster, Florian Tramèr, He He, Atoosa Kasirzadeh, Yejin Choi, David Krueger NeurIPSW
2024
OASIS: Open Agents Social Interaction Simulations on One Million Agents
Ziyi Yang, Zaibin Zhang, Zirui Zheng, Yuxian Jiang, Ziyue Gan, Zhiyu Wang, Zijian Ling, Konisberg, Martz Ma, Bowen Dong, Prateek Gupta, Shuyue Hu, Zhenfei Yin, Guohao Li, Xu Jia, Lijun Wang, Bernard Ghanem, Huchuan Lu, Wanli Ouyang, Yu Qiao, Philip Torr, Jing Shao ECCVW
2024
PVUW 2024 Challenge on Complex Video Understanding: Methods and Results
Henghui Ding, Chang Liu, Yunchao Wei, Nikhila Ravi, Shuting He, Song Bai, Philip Torr, Deshui Miao, Xin Li, Zhenyu He, Yaowei Wang, Ming-Hsuan Yang, Zhensong Xu, Jiangtao Yao, Chengjing Wu, Ting Liu, Luoqi Liu, Xinyu Liu, Jing Zhang, Kexin Zhang, Yuting Yang, Licheng Jiao, Shuyuan Yang, Mingqi Gao, Jingnan Luo, Jinyu Yang, Jungong Han, Feng Zheng, Bin Cao, Yisi Zhang, Xuanxu Lin, Xingjian He, Bo Zhao, Jing Liu, Feiyu Pan, Hao Fang, Xiankai Lu ICML
2024
Position: Near to Mid-Term Risks and Opportunities of Open-Source Generative AI
Francisco Eiras, Aleksandar Petrov, Bertie Vidgen, Christian Schroeder De Witt, Fabio Pizzati, Katherine Elkins, Supratik Mukhopadhyay, Adel Bibi, Botos Csaba, Fabro Steibel, Fazl Barez, Genevieve Smith, Gianluca Guadagni, Jon Chun, Jordi Cabot, Joseph Marvin Imperial, Juan A. Nolazco-Flores, Lori Landay, Matthew Thomas Jackson, Paul Rottger, Philip Torr, Trevor Darrell, Yong Suk Lee, Jakob Nicolaus Foerster NeurIPSW
2024
Reasoning in Reasoning: A Hierarchical Framework for Better and Faster Neural Theorem Proving
Ziyu Ye, Jiacheng Chen, Jonathan Light, Yifei Wang, Jiankai Sun, Mac Schwager, Philip Torr, Guohao Li, Yuxin Chen, Kaiyu Yang, Yisong Yue, Ziniu Hu AISTATS
2022
Amortized Rejection Sampling in Universal Probabilistic Programming
Saeid Naderiparizi, Adam Scibior, Andreas Munk, Mehrdad Ghadiri, Atilim Gunes Baydin, Bradley J. Gram-Hansen, Christian A. Schroeder De Witt, Robert Zinkov, Philip Torr, Tom Rainforth, Yee Whye Teh, Frank Wood NeurIPS
2019
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
Atilim Gunes Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Saeid Naderiparizi, Andreas Munk, Jialin Liu, Bradley Gram-Hansen, Gilles Louppe, Lawrence Meadows, Philip Torr, Victor Lee, Kyle Cranmer, Mr. Prabhat, Frank Wood