ML Anthology
Authors
Search
About
Tsamardinos, Ioannis
25 publications
NeurIPS
2024
ChronoEpilogi: Scalable Time Series Selection with Multiple Solutions
Etienne Vareille
,
Michele Linardi
,
Ioannis Tsamardinos
,
Vassilis Christophides
AutoML
2024
Confidence Interval Estimation of Predictive Performance in the Context of AutoML
Konstantinos Paraschakis
,
Andrea Castellani
,
Giorgos Borboudakis
,
Ioannis Tsamardinos
MLJ
2023
Learning Biologically-Interpretable Latent Representations for Gene Expression Data
Ioulia Karagiannaki
,
Krystallia Gourlia
,
Vincenzo Lagani
,
Yannis Pantazis
,
Ioannis Tsamardinos
PGM
2020
Tuning Causal Discovery Algorithms
Konstantina Biza
,
Ioannis Tsamardinos
,
Sofia Triantafillou
MLJ
2019
A Greedy Feature Selection Algorithm for Big Data of High Dimensionality
Ioannis Tsamardinos
,
Giorgos Borboudakis
,
Pavlos Katsogridakis
,
Polyvios Pratikakis
,
Vassilis Christophides
JMLR
2019
Forward-Backward Selection with Early Dropping
Giorgos Borboudakis
,
Ioannis Tsamardinos
MLJ
2018
Bootstrapping the Out-of-Sample Predictions for Efficient and Accurate Cross-Validation
Ioannis Tsamardinos
,
Elissavet Greasidou
,
Giorgos Borboudakis
UAI
2016
Marginal Causal Consistency in Constraint-Based Causal Learning
Anna Roumpelaki
,
Giorgos Borboudakis
,
Sofia Triantafillou
,
Ioannis Tsamardinos
UAI
2016
Score-Based vs Constraint-Based Causal Learning in the Presence of Confounders
Sofia Triantafillou
,
Ioannis Tsamardinos
UAI
2015
Bayesian Network Learning with Discrete Case-Control Data
Giorgos Borboudakis
,
Ioannis Tsamardinos
JMLR
2015
Constraint-Based Causal Discovery from Multiple Interventions over Overlapping Variable Sets
Sofia Triantafillou
,
Ioannis Tsamardinos
UAI
2013
Scoring and Searching over Bayesian Networks with Causal and Associative Priors
Giorgos Borboudakis
,
Ioannis Tsamardinos
ICML
2012
Incorporating Causal Prior Knowledge as Path-Constraints in Bayesian Networks and Maximal Ancestral Graphs
Giorgos Borboudakis
,
Ioannis Tsamardinos
JMLR
2012
Towards Integrative Causal Analysis of Heterogeneous Data Sets and Studies
Ioannis Tsamardinos
,
Sofia Triantafillou
,
Vincenzo Lagani
AISTATS
2010
Learning Causal Structure from Overlapping Variable Sets
Sofia Triantafillou
,
Ioannis Tsamardinos
,
Ioannis Tollis
JMLR
2010
Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation
Constantin F. Aliferis
,
Alexander Statnikov
,
Ioannis Tsamardinos
,
Subramani Mani
,
Xenofon D. Koutsoukos
JMLR
2010
Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions
Constantin F. Aliferis
,
Alexander Statnikov
,
Ioannis Tsamardinos
,
Subramani Mani
,
Xenofon D. Koutsoukos
ECML-PKDD
2010
Permutation Testing Improves Bayesian Network Learning
Ioannis Tsamardinos
,
Giorgos Borboudakis
AAAI
2008
Bounding the False Discovery Rate in Local Bayesian Network Learning
Ioannis Tsamardinos
,
Laura E. Brown
MLJ
2006
The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm
Ioannis Tsamardinos
,
Laura E. Brown
,
Constantin F. Aliferis
AAAI
2005
A Comparison of Novel and State-of-the-Art Polynomial Bayesian Network Learning Algorithms
Laura E. Brown
,
Ioannis Tsamardinos
,
Constantin F. Aliferis
AAAI
2005
Using the GEMS System for Cancer Diagnosis and Biomarker Discovery from Microarray Gene Expression Data
Alexander R. Statnikov
,
Ioannis Tsamardinos
,
Constantin F. Aliferis
ICML
2004
A Theoretical Characterization of Linear SVM-Based Feature Selection
Douglas P. Hardin
,
Ioannis Tsamardinos
,
Constantin F. Aliferis
AISTATS
2003
Towards Principled Feature Selection: Relevancy, Filters and Wrappers
Ioannis Tsamardinos
,
Constantin F. Aliferis
AAAI
1998
Fast Transformation of Temporal Plans for Efficient Execution
Ioannis Tsamardinos
,
Nicola Muscettola
,
Paul H. Morris