Tu, Wei-Wei

19 publications

MLJ 2025 Optimal Large-Scale Stochastic Optimization of NDCG Surrogates for Deep Learning Zi-Hao Qiu, Quanqi Hu, Yongjian Zhong, Wei-Wei Tu, Lijun Zhang, Tianbao Yang
AAAI 2024 DGPO: Discovering Multiple Strategies with Diversity-Guided Policy Optimization Wentse Chen, Shiyu Huang, Yuan Chiang, Tim Pearce, Wei-Wei Tu, Ting Chen, Jun Zhu
ICML 2024 Efficient Stochastic Approximation of Minimax Excess Risk Optimization Lijun Zhang, Haomin Bai, Wei-Wei Tu, Ping Yang, Yao Hu
JMLR 2024 Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization Sijia Chen, Yu-Jie Zhang, Wei-Wei Tu, Peng Zhao, Lijun Zhang
AAAI 2024 Safe Abductive Learning in the Presence of Inaccurate Rules Xiaowen Yang, Jie-Jing Shao, Wei-Wei Tu, Yufeng Li, Wang-Zhou Dai, Zhi-Hua Zhou
MLJ 2024 Transfer and Share: Semi-Supervised Learning from Long-Tailed Data Tong Wei, Qian-Yu Liu, Jiang-Xin Shi, Wei-Wei Tu, Lan-Zhe Guo
ICML 2023 Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization Sijia Chen, Wei-Wei Tu, Peng Zhao, Lijun Zhang
NeurIPS 2022 Online Frank-Wolfe with Arbitrary Delays Yuanyu Wan, Wei-Wei Tu, Lijun Zhang
MLJ 2022 Online Strongly Convex Optimization with Unknown Delays Yuanyu Wan, Wei-Wei Tu, Lijun Zhang
JMLR 2022 Projection-Free Distributed Online Learning with Sublinear Communication Complexity Yuanyu Wan, Guanghui Wang, Wei-Wei Tu, Lijun Zhang
ECML-PKDD 2021 AutoML Meets Time Series Regression Design and Analysis of the AutoSeries Challenge Zhen Xu, Wei-Wei Tu, Isabelle Guyon
NeurIPS 2021 Dual Adaptivity: A Universal Algorithm for Minimizing the Adaptive Regret of Convex Functions Lijun Zhang, Guanghui Wang, Wei-Wei Tu, Wei Jiang, Zhi-Hua Zhou
AAAI 2021 Explanation Consistency Training: Facilitating Consistency-Based Semi-Supervised Learning with Interpretability Tao Han, Wei-Wei Tu, Yufeng Li
AAAI 2020 Efficient Neural Architecture Search via Proximal Iterations Quanming Yao, Ju Xu, Wei-Wei Tu, Zhanxing Zhu
ICML 2020 Projection-Free Distributed Online Convex Optimization with $O(\sqrt{T})$ Communication Complexity Yuanyu Wan, Wei-Wei Tu, Lijun Zhang
IJCAI 2019 Learning for Tail Label Data: A Label-Specific Feature Approach Tong Wei, Wei-Wei Tu, Yufeng Li
AAAI 2019 Multi-Fidelity Automatic Hyper-Parameter Tuning via Transfer Series Expansion Yi-Qi Hu, Yang Yu, Wei-Wei Tu, Qiang Yang, Yuqiang Chen, Wenyuan Dai
IJCAI 2019 Privacy-Preserving Stacking with Application to Cross-Organizational Diabetes Prediction Quanming Yao, Xiawei Guo, James T. Kwok, Wei-Wei Tu, Yuqiang Chen, Wenyuan Dai, Qiang Yang
AAAI 2019 Towards Automated Semi-Supervised Learning Yufeng Li, Hai Wang, Tong Wei, Wei-Wei Tu