ML Anthology
Authors
Search
About
Turner, Richard
30 publications
NeurIPS
2023
Geometric Neural Diffusion Processes
Emile Mathieu
,
Vincent Dutordoir
,
Michael Hutchinson
,
Valentin De Bortoli
,
Yee Whye Teh
,
Richard Turner
NeurIPS
2023
Kronecker-Factored Approximate Curvature for Modern Neural Network Architectures
Runa Eschenhagen
,
Alexander Immer
,
Richard Turner
,
Frank Schneider
,
Philipp Hennig
NeurIPS
2023
PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers
Phillip Lippe
,
Bas Veeling
,
Paris Perdikaris
,
Richard Turner
,
Johannes Brandstetter
NeurIPS
2022
Contextual Squeeze-and-Excitation for Efficient Few-Shot Image Classification
Massimiliano Patacchiola
,
John Bronskill
,
Aliaksandra Shysheya
,
Katja Hofmann
,
Sebastian Nowozin
,
Richard Turner
NeurIPS
2021
Collapsed Variational Bounds for Bayesian Neural Networks
Marcin Tomczak
,
Siddharth Swaroop
,
Andrew Foong
,
Richard Turner
NeurIPS
2021
How Tight Can PAC-Bayes Be in the Small Data Regime?
Andrew Foong
,
Wessel Bruinsma
,
David Burt
,
Richard Turner
NeurIPS
2021
Memory Efficient Meta-Learning with Large Images
John Bronskill
,
Daniela Massiceti
,
Massimiliano Patacchiola
,
Katja Hofmann
,
Sebastian Nowozin
,
Richard Turner
ICLR
2020
Conservative Uncertainty Estimation by Fitting Prior Networks
Kamil Ciosek
,
Vincent Fortuin
,
Ryota Tomioka
,
Katja Hofmann
,
Richard Turner
NeurIPS
2020
Continual Deep Learning by Functional Regularisation of Memorable past
Pingbo Pan
,
Siddharth Swaroop
,
Alexander Immer
,
Runa Eschenhagen
,
Richard Turner
,
Mohammad Emtiyaz Khan
ICMLW
2020
Continual Deep Learning by Functional Regularisation of Memorable past
Pingbo Pan
,
Siddharth Swaroop
,
Alexander Immer
,
Runa Eschenhagen
,
Richard Turner
,
Mohammad Emtiyaz Khan
NeurIPS
2020
Efficient Low Rank Gaussian Variational Inference for Neural Networks
Marcin Tomczak
,
Siddharth Swaroop
,
Richard Turner
AISTATS
2020
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stuehmer
,
Richard Turner
,
Sebastian Nowozin
NeurIPS
2020
Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes
Andrew Foong
,
Wessel Bruinsma
,
Jonathan Gordon
,
Yann Dubois
,
James Requeima
,
Richard Turner
NeurIPS
2020
On the Expressiveness of Approximate Inference in Bayesian Neural Networks
Andrew Foong
,
David Burt
,
Yingzhen Li
,
Richard Turner
ICML
2020
Scalable Exact Inference in Multi-Output Gaussian Processes
Wessel Bruinsma
,
Eric Perim
,
William Tebbutt
,
Scott Hosking
,
Arno Solin
,
Richard Turner
ICML
2020
TaskNorm: Rethinking Batch Normalization for Meta-Learning
John Bronskill
,
Jonathan Gordon
,
James Requeima
,
Sebastian Nowozin
,
Richard Turner
NeurIPS
2020
VAEM: A Deep Generative Model for Heterogeneous Mixed Type Data
Chao Ma
,
Sebastian Tschiatschek
,
Richard Turner
,
José Miguel Hernández-Lobato
,
Cheng Zhang
ICLR
2019
Meta-Learning Probabilistic Inference for Prediction
Jonathan Gordon
,
John Bronskill
,
Matthias Bauer
,
Sebastian Nowozin
,
Richard Turner
AISTATS
2019
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning
Aapo Hyvarinen
,
Hiroaki Sasaki
,
Richard Turner
JMLR
2018
Invariant Models for Causal Transfer Learning
Mateo Rojas-Carulla
,
Bernhard Schölkopf
,
Richard Turner
,
Jonas Peters
ICML
2018
Structured Evolution with Compact Architectures for Scalable Policy Optimization
Krzysztof Choromanski
,
Mark Rowland
,
Vikas Sindhwani
,
Richard Turner
,
Adrian Weller
ICML
2018
The Mirage of Action-Dependent Baselines in Reinforcement Learning
George Tucker
,
Surya Bhupatiraju
,
Shixiang Gu
,
Richard Turner
,
Zoubin Ghahramani
,
Sergey Levine
ICML
2017
Magnetic Hamiltonian Monte Carlo
Nilesh Tripuraneni
,
Mark Rowland
,
Zoubin Ghahramani
,
Richard Turner
ICML
2016
Black-Box Alpha Divergence Minimization
Jose Hernandez-Lobato
,
Yingzhen Li
,
Mark Rowland
,
Thang Bui
,
Daniel Hernandez-Lobato
,
Richard Turner
ICML
2016
Deep Gaussian Processes for Regression Using Approximate Expectation Propagation
Thang Bui
,
Daniel Hernandez-Lobato
,
Jose Hernandez-Lobato
,
Yingzhen Li
,
Richard Turner
ICML
2015
Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs
Yarin Gal
,
Richard Turner
NeurIPS
2011
Probabilistic Amplitude and Frequency Demodulation
Richard Turner
,
Maneesh Sahani
NeurIPS
2009
Occlusive Components Analysis
Jörg Lücke
,
Richard Turner
,
Maneesh Sahani
,
Marc Henniges
NeurIPS
2007
Modeling Natural Sounds with Modulation Cascade Processes
Richard Turner
,
Maneesh Sahani
NeurIPS
2007
On Sparsity and Overcompleteness in Image Models
Pietro Berkes
,
Richard Turner
,
Maneesh Sahani