ML Anthology
Authors
Search
About
Ullman, Jonathan
27 publications
AISTATS
2025
Privacy in Metalearning and Multitask Learning: Modeling and Separations
Maryam Aliakbarpour
,
Konstantina Bairaktari
,
Adam Smith
,
Marika Swanberg
,
Jonathan Ullman
ICLR
2024
Chameleon: Increasing Label-Only Membership Leakage with Adaptive Poisoning
Harsh Chaudhari
,
Giorgio Severi
,
Alina Oprea
,
Jonathan Ullman
ICML
2024
How to Make the Gradients Small Privately: Improved Rates for Differentially Private Non-Convex Optimization
Andrew Lowy
,
Jonathan Ullman
,
Stephen Wright
COLT
2024
Metalearning with Very Few Samples per Task
Maryam Aliakbarpour
,
Konstantina Bairaktari
,
Gavin Brown
,
Adam Smith
,
Nathan Srebro
,
Jonathan Ullman
NeurIPS
2024
Private Geometric Median
Mahdi Haghifam
,
Thomas Steinke
,
Jonathan Ullman
COLT
2024
Smooth Lower Bounds for Differentially Private Algorithms via Padding-and-Permuting Fingerprinting Codes
Naty Peter
,
Eliad Tsfadia
,
Jonathan Ullman
TMLR
2023
Fair and Useful Cohort Selection
Konstantina Bairaktari
,
Paul Tsela Langton
,
Huy Nguyen
,
Niklas Smedemark-Margulies
,
Jonathan Ullman
ICML
2023
From Robustness to Privacy and Back
Hilal Asi
,
Jonathan Ullman
,
Lydia Zakynthinou
COLT
2023
Multitask Learning via Shared Features: Algorithms and Hardness
Konstantina Bairaktari
,
Guy Blanc
,
Li-Yang Tan
,
Jonathan Ullman
,
Lydia Zakynthinou
ICMLW
2023
TMI! Finetuned Models Spill Secrets from Pretraining
John Abascal
,
Stanley Wu
,
Alina Oprea
,
Jonathan Ullman
COLT
2022
A Private and Computationally-Efficient Estimator for Unbounded Gaussians
Gautam Kamath
,
Argyris Mouzakis
,
Vikrant Singhal
,
Thomas Steinke
,
Jonathan Ullman
NeurIPS
2021
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
Gavin Brown
,
Marco Gaboardi
,
Adam Smith
,
Jonathan Ullman
,
Lydia Zakynthinou
ICML
2021
Leveraging Public Data for Practical Private Query Release
Terrance Liu
,
Giuseppe Vietri
,
Thomas Steinke
,
Jonathan Ullman
,
Steven Wu
NeurIPS
2020
Auditing Differentially Private Machine Learning: How Private Is Private SGD?
Matthew Jagielski
,
Jonathan Ullman
,
Alina Oprea
NeurIPS
2020
CoinPress: Practical Private Mean and Covariance Estimation
Sourav Biswas
,
Yihe Dong
,
Gautam Kamath
,
Jonathan Ullman
ALT
2020
Efficient Private Algorithms for Learning Large-Margin Halfspaces
Huy Lê Nguyễn
,
Jonathan Ullman
,
Lydia Zakynthinou
NeurIPS
2020
Private Identity Testing for High-Dimensional Distributions
Clément L Canonne
,
Gautam Kamath
,
Audra McMillan
,
Jonathan Ullman
,
Lydia Zakynthinou
COLT
2020
Private Mean Estimation of Heavy-Tailed Distributions
Gautam Kamath
,
Vikrant Singhal
,
Jonathan Ullman
ICML
2020
Private Query Release Assisted by Public Data
Raef Bassily
,
Albert Cheu
,
Shay Moran
,
Aleksandar Nikolov
,
Jonathan Ullman
,
Steven Wu
NeurIPS
2019
Differentially Private Algorithms for Learning Mixtures of Separated Gaussians
Gautam Kamath
,
Or Sheffet
,
Vikrant Singhal
,
Jonathan Ullman
ICML
2019
Differentially Private Fair Learning
Matthew Jagielski
,
Michael Kearns
,
Jieming Mao
,
Alina Oprea
,
Aaron Roth
,
Saeed Sharifi-Malvajerdi
,
Jonathan Ullman
NeurIPS
2019
Efficiently Estimating Erdos-Renyi Graphs with Node Differential Privacy
Jonathan Ullman
,
Adam Sealfon
COLT
2019
Privately Learning High-Dimensional Distributions
Gautam Kamath
,
Jerry Li
,
Vikrant Singhal
,
Jonathan Ullman
NeurIPS
2018
Local Differential Privacy for Evolving Data
Matthew Joseph
,
Aaron Roth
,
Jonathan Ullman
,
Bo Waggoner
NeurIPS
2018
The Limits of Post-Selection Generalization
Jonathan Ullman
,
Adam Smith
,
Kobbi Nissim
,
Uri Stemmer
,
Thomas Steinke
COLT
2017
The Price of Selection in Differential Privacy
Mitali Bafna
,
Jonathan Ullman
NeurIPS
2016
Privacy Odometers and Filters: Pay-as-You-Go Composition
Ryan M Rogers
,
Aaron Roth
,
Jonathan Ullman
,
Salil Vadhan