Ullrich, Karen

22 publications

ICML 2025 Aligned Multi Objective Optimization Yonathan Efroni, Ben Kretzu, Daniel R. Jiang, Jalaj Bhandari, Zheqing Zhu, Karen Ullrich
ICCV 2025 DIMCIM: A Quantitative Evaluation Framework for Default-Mode Diversity and Generalization in Text-to-Image Generative Models Revant Teotia, Candace Ross, Karen Ullrich, Sumit Chopra, Adriana Romero-Soriano, Melissa Hall, Matthew Muckley
ICLR 2025 Exact Byte-Level Probabilities from Tokenized Language Models for FIM-Tasks and Model Ensembles Buu Phan, Brandon Amos, Itai Gat, Marton Havasi, Matthew J. Muckley, Karen Ullrich
TMLR 2025 On the Challenges and Opportunities in Generative AI Laura Manduchi, Clara Meister, Kushagra Pandey, Robert Bamler, Ryan Cotterell, Sina Däubener, Sophie Fellenz, Asja Fischer, Thomas Gärtner, Matthias Kirchler, Marius Kloft, Yingzhen Li, Christoph Lippert, Gerard de Melo, Eric Nalisnick, Björn Ommer, Rajesh Ranganath, Maja Rudolph, Karen Ullrich, Guy Van den Broeck, Julia E Vogt, Yixin Wang, Florian Wenzel, Frank Wood, Stephan Mandt, Vincent Fortuin
NeurIPSW 2024 Aligned Multi-Objective Optimization Yonathan Efroni, Daniel Jiang, Ben Kretzu, Jalaj Bhandari, Zheqing Zhu, Karen Ullrich
TMLR 2024 An Optimal Control Perspective on Diffusion-Based Generative Modeling Julius Berner, Lorenz Richter, Karen Ullrich
NeurIPS 2024 End-to-End Causal Effect Estimation from Unstructured Natural Language Data Nikita Dhawan, Leonardo Cotta, Karen Ullrich, Rahul G. Krishnan, Chris J. Maddison
ICMLW 2024 End-to-End Causal Effect Estimation from Unstructured Natural Language Data Nikita Dhawan, Leonardo Cotta, Karen Ullrich, Rahul Krishnan, Chris J. Maddison
NeurIPS 2024 Mission Impossible: A Statistical Perspective on Jailbreaking LLMs Jingtong Su, Julia Kempe, Karen Ullrich
ICMLW 2024 Mission Impossible: A Statistical Perspective on Jailbreaking LLMs Jingtong Su, Julia Kempe, Karen Ullrich
ICMLW 2024 Understanding and Mitigating Tokenization Bias in Language Models Buu Phan, Marton Havasi, Matthew J. Muckley, Karen Ullrich
TMLR 2023 Image Compression with Product Quantized Masked Image Modeling Alaaeldin El-Nouby, Matthew J. Muckley, Karen Ullrich, Ivan Laptev, Jakob Verbeek, Herve Jegou
ICML 2023 Improving Statistical Fidelity for Neural Image Compression with Implicit Local Likelihood Models Matthew J. Muckley, Alaaeldin El-Nouby, Karen Ullrich, Herve Jegou, Jakob Verbeek
NeurIPSW 2022 An Optimal Control Perspective on Diffusion-Based Generative Modeling Julius Berner, Lorenz Richter, Karen Ullrich
ICML 2021 Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding Yangjun Ruan, Karen Ullrich, Daniel S Severo, James Townsend, Ashish Khisti, Arnaud Doucet, Alireza Makhzani, Chris Maddison
ICLRW 2021 Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding Yangjun Ruan, Karen Ullrich, Daniel Severo, James Townsend, Ashish J Khisti, Arnaud Doucet, Alireza Makhzani, Chris J. Maddison
NeurIPS 2021 Lossy Compression for Lossless Prediction Yann Dubois, Benjamin Bloem-Reddy, Karen Ullrich, Chris J Maddison
ICLRW 2021 Lossy Compression for Lossless Prediction Yann Dubois, Benjamin Bloem-Reddy, Karen Ullrich, Chris J. Maddison
NeurIPSW 2021 Your Dataset Is a Multiset and You Should Compress It like One Daniel Severo, James Townsend, Ashish J Khisti, Alireza Makhzani, Karen Ullrich
UAI 2019 Differentiable Probabilistic Models of Scientific Imaging with the Fourier Slice Theorem Karen Ullrich, Rianne Berg, Marcus Brubaker, David Fleet, Max Welling
NeurIPS 2017 Bayesian Compression for Deep Learning Christos Louizos, Karen Ullrich, Max Welling
ICLR 2017 Soft Weight-Sharing for Neural Network Compression Karen Ullrich, Edward Meeds, Max Welling