ML Anthology
Authors
Search
About
Ungar, Lyle H.
26 publications
AAAI
2025
The Illusion of Empathy: How AI Chatbots Shape Conversation Perception
Tingting Liu
,
Salvatore Giorgi
,
Ankit Aich
,
Allison Lahnala
,
Brenda Curtis
,
Lyle H. Ungar
,
João Sedoc
AAAI
2019
Unsupervised Post-Processing of Word Vectors via Conceptor Negation
Tianlin Liu
,
Lyle H. Ungar
,
João Sedoc
AAAI
2017
Proper Proxy Scoring Rules
Jens Witkowski
,
Pavel Atanasov
,
Lyle H. Ungar
,
Andreas Krause
AAAI
2016
Discovering User Attribute Stylistic Differences via Paraphrasing
Daniel Preotiuc-Pietro
,
Wei Xu
,
Lyle H. Ungar
JMLR
2015
Eigenwords: Spectral Word Embeddings
Paramveer S. Dhillon
,
Dean P. Foster
,
Lyle H. Ungar
JMLR
2013
A Risk Comparison of Ordinary Least Squares vs Ridge Regression
Paramveer S. Dhillon
,
Dean P. Foster
,
Sham M. Kakade
,
Lyle H. Ungar
ICML
2012
Using CCA to Improve CCA: A New Spectral Method for Estimating Vector Models of Words
Paramveer S. Dhillon
,
Jordan Rodu
,
Dean P. Foster
,
Lyle H. Ungar
JMLR
2011
Minimum Description Length Penalization for Group and Multi-Task Sparse Learning
Paramveer S. Dhillon
,
Dean Foster
,
Lyle H. Ungar
NeurIPS
2011
Multi-View Learning of Word Embeddings via CCA
Paramveer Dhillon
,
Dean P. Foster
,
Lyle H. Ungar
ECML-PKDD
2009
Multi-Task Feature Selection Using the Multiple Inclusion Criterion (MIC)
Paramveer S. Dhillon
,
Brian Tomasik
,
Dean P. Foster
,
Lyle H. Ungar
NeurIPS
2008
Regularized Learning with Networks of Features
Ted Sandler
,
John Blitzer
,
Partha P. Talukdar
,
Lyle H. Ungar
MLJ
2007
Active Learning for Logistic Regression: An Evaluation
Andrew I. Schein
,
Lyle H. Ungar
JMLR
2006
Streamwise Feature Selection
Jing Zhou
,
Dean P. Foster
,
Robert A. Stine
,
Lyle H. Ungar
AISTATS
2005
Streaming Feature Selection Using IIC
Lyle H. Ungar
,
Jing Zhou
,
Dean P. Foster
,
Bob A. Stine
AISTATS
2003
A Generalized Linear Model for Principal Component Analysis of Binary Data
Andrew I. Schein
,
Lawrence K. Saul
,
Lyle H. Ungar
ICML
2003
Mixtures of Conditional Maximum Entropy Models
Dmitry Pavlov
,
Alexandrin Popescul
,
David M. Pennock
,
Lyle H. Ungar
IJCAI
2001
Exploiting Multiple Secondary Reinforcers in Policy Gradient Reinforcement Learning
Gregory Z. Grudic
,
Lyle H. Ungar
UAI
2001
Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments
Alexandrin Popescul
,
Lyle H. Ungar
,
David M. Pennock
,
Steve Lawrence
NeurIPS
2001
Rates of Convergence of Performance Gradient Estimates Using Function Approximation and Bias in Reinforcement Learning
Gregory Z. Grudic
,
Lyle H. Ungar
AAAI
2000
Iterative Combinatorial Auctions: Theory and Practice
David C. Parkes
,
Lyle H. Ungar
ICML
2000
Localizing Policy Gradient Estimates to Action Transition
Gregory Z. Grudic
,
Lyle H. Ungar
AAAI
2000
Localizing Search in Reinforcement Learning
Gregory Z. Grudic
,
Lyle H. Ungar
AAAI
2000
Preventing Strategic Manipulation in Iterative Auctions: Proxy Agents and Price-Adjustment
David C. Parkes
,
Lyle H. Ungar
ICML
1997
Characterizing the Generalization Performance of Model Selection Strategies
Dale Schuurmans
,
Lyle H. Ungar
,
Dean P. Foster
MLJ
1996
Active Learning for Vision-Based Robot Grasping
Marcos Salganicoff
,
Lyle H. Ungar
,
Ruzena Bajcsy
ICML
1995
Active Exploration and Learning in Real-Valued Spaces Using Multi-Armed Bandit Allocation Indices
Marcos Salganicoff
,
Lyle H. Ungar