van de Meent, Jan-Willem

31 publications

ICML 2025 Controlled Generation with Equivariant Variational Flow Matching Floor Eijkelboom, Heiko Zimmermann, Sharvaree Vadgama, Erik J Bekkers, Max Welling, Christian A. Naesseth, Jan-Willem Van De Meent
ICML 2025 Erwin: A Tree-Based Hierarchical Transformer for Large-Scale Physical Systems Maksim Zhdanov, Max Welling, Jan-Willem Van De Meent
ICML 2025 Exponential Family Variational Flow Matching for Tabular Data Generation Andrés Guzmán-Cordero, Floor Eijkelboom, Jan-Willem Van De Meent
ICLR 2024 Entropy Coding of Unordered Data Structures Julius Kunze, Daniel Severo, Giulio Zani, Jan-Willem van de Meent, James Townsend
ICMLW 2024 Modeling Droplets Dynamics in Emulsions with Graph Neural Networks Giulio Ortali, Federico Toschi, Jan-Willem van de Meent
NeurIPS 2024 Practical Shuffle Coding Julius Kunze, Daniel Severo, Jan-Willem van de Meent, James Townsend
NeurIPS 2024 VISA: Variational Inference with Sequential Sample-Average Approximations Heiko Zimmermann, Christian A. Naesseth, Jan-Willem van de Meent
NeurIPS 2024 Variational Flow Matching for Graph Generation Floor Eijkelboom, Grigory Bartosh, Christian A. Naesseth, Max Welling, Jan-Willem van de Meent
TMLR 2023 A Variational Perspective on Generative Flow Networks Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, Christian A Naesseth
ICMLW 2023 Entropy Coding of Unordered Data Structures Julius Kunze, Daniel Severo, Giulio Zani, Jan-Willem van de Meent, James Townsend
CoRL 2023 One-Shot Imitation Learning via Interaction Warping Ondrej Biza, Skye Thompson, Kishore Reddy Pagidi, Abhinav Kumar, Elise van der Pol, Robin Walters, Thomas Kipf, Jan-Willem van de Meent, Lawson L. S. Wong, Robert Platt
NeurIPS 2023 Topological Obstructions and How to Avoid Them Babak Esmaeili, Robin Walters, Heiko Zimmermann, Jan-Willem van de Meent
ICLRW 2022 Binding Actions to Objects in World Models Ondrej Biza, Robert Platt, Jan-Willem van de Meent, Lawson L.S. Wong, Thomas Kipf
WACV 2022 Enhancing Few-Shot Image Classification with Unlabelled Examples Peyman Bateni, Jarred Barber, Jan-Willem van de Meent, Frank Wood
ICML 2022 Learning Symmetric Embeddings for Equivariant World Models Jung Yeon Park, Ondrej Biza, Linfeng Zhao, Jan-Willem Van De Meent, Robin Walters
NeurIPSW 2022 Understanding Optimization Challenges When Encoding to Geometric Structures Babak Esmaeili, Robin Walters, Heiko Zimmermann, Jan-Willem van de Meent
AISTATS 2021 Rate-Regularization and Generalization in Variational Autoencoders Alican Bozkurt, Babak Esmaeili, Jean-Baptiste Tristan, Dana Brooks, Jennifer Dy, Jan-Willem van de Meent
ICML 2021 Conjugate Energy-Based Models Hao Wu, Babak Esmaeili, Michael Wick, Jean-Baptiste Tristan, Jan-Willem Van De Meent
ICLRW 2021 Conjugate Energy-Based Models Hao Wu, Babak Esmaeili, Michael L Wick, Jean-Baptiste Tristan, Jan-Willem van de Meent
NeurIPS 2021 Nested Variational Inference Heiko Zimmermann, Hao Wu, Babak Esmaeili, Jan-Willem van de Meent
ICML 2020 Amortized Population Gibbs Samplers with Neural Sufficient Statistics Hao Wu, Heiko Zimmermann, Eli Sennesh, Tuan Anh Le, Jan-Willem Van De Meent
NeurIPSW 2020 Generator Surgery for Compressed Sensing Jung Yeon Park, Niklas Smedemark-Margulies, Mara Daniels, Rose Yu, Jan-Willem van de Meent, PAul HAnd
NeurIPS 2020 Neural Topographic Factor Analysis for fMRI Data Eli Sennesh, Zulqarnain Khan, Yiyu Wang, J Benjamin Hutchinson, Ajay Satpute, Jennifer Dy, Jan-Willem van de Meent
AISTATS 2019 Structured Neural Topic Models for Reviews Babak Esmaeili, Hongyi Huang, Byron Wallace, Jan-Willem van de Meent
NeurIPS 2017 Learning Disentangled Representations with Semi-Supervised Deep Generative Models Siddharth N, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Noah Goodman, Pushmeet Kohli, Frank Wood, Philip Torr
NeurIPS 2016 Bayesian Optimization for Probabilistic Programs Tom Rainforth, Tuan Anh Le, Jan-Willem van de Meent, Michael A Osborne, Frank Wood
AISTATS 2016 Black-Box Policy Search with Probabilistic Programs Jan-Willem van de Meent, Brooks Paige, David Tolpin, Frank D. Wood
ECML-PKDD 2015 Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs David Tolpin, Jan-Willem van de Meent, Brooks Paige, Frank D. Wood
AISTATS 2015 Particle Gibbs with Ancestor Sampling for Probabilistic Programs Jan-Willem van de Meent, Hongseok Yang, Vikash Mansinghka, Frank D. Wood
ECML-PKDD 2015 Probabilistic Programming in Anglican David Tolpin, Jan-Willem van de Meent, Frank D. Wood
AISTATS 2014 A New Approach to Probabilistic Programming Inference Frank D. Wood, Jan-Willem van de Meent, Vikash Mansinghka