ML Anthology
Authors
Search
About
Van Der Hoeven, Dirk
15 publications
JMLR
2025
A Unified Analysis of Nonstochastic Delayed Feedback for Combinatorial Semi-Bandits, Linear Bandits, and MDPs
Lukas Zierahn
,
Dirk van der Hoeven
,
Tal Lancewicki
,
Aviv Rosenberg
,
Nicolò Cesa-Bianchi
NeurIPS
2025
When Lower-Order Terms Dominate: Adaptive Expert Algorithms for Heavy-Tailed Losses
Antoine Moulin
,
Emmanuel Esposito
,
Dirk van der Hoeven
ICML
2023
Delayed Bandits: When Do Intermediate Observations Help?
Emmanuel Esposito
,
Saeed Masoudian
,
Hao Qiu
,
Dirk Van Der Hoeven
,
Nicolò Cesa-Bianchi
,
Yevgeny Seldin
ICML
2023
Trading-Off Payments and Accuracy in Online Classification with Paid Stochastic Experts
Dirk Van Der Hoeven
,
Ciara Pike-Burke
,
Hao Qiu
,
Nicolò Cesa-Bianchi
AISTATS
2022
Nonstochastic Bandits and Experts with Arm-Dependent Delays
Dirk Van Der Hoeven
,
Nicolò Cesa-Bianchi
NeurIPS
2022
A Near-Optimal Best-of-Both-Worlds Algorithm for Online Learning with Feedback Graphs
Chloé Rouyer
,
Dirk van der Hoeven
,
Nicolò Cesa-Bianchi
,
Yevgeny Seldin
NeurIPS
2022
A Regret-Variance Trade-Off in Online Learning
Dirk van der Hoeven
,
Nikita Zhivotovskiy
,
Nicolò Cesa-Bianchi
NeurIPS
2022
Learning on the Edge: Online Learning with Stochastic Feedback Graphs
Emmanuel Esposito
,
Federico Fusco
,
Dirk van der Hoeven
,
Nicolò Cesa-Bianchi
NeurIPS
2021
Beyond Bandit Feedback in Online Multiclass Classification
Dirk van der Hoeven
,
Federico Fusco
,
Nicolò Cesa-Bianchi
JMLR
2021
MetaGrad: Adaptation Using Multiple Learning Rates in Online Learning
Tim van Erven
,
Wouter M. Koolen
,
Dirk van der Hoeven
NeurIPS
2020
Comparator-Adaptive Convex Bandits
Dirk van der Hoeven
,
Ashok Cutkosky
,
Haipeng Luo
NeurIPS
2020
Exploiting the Surrogate Gap in Online Multiclass Classification
Dirk van der Hoeven
COLT
2020
Open Problem: Fast and Optimal Online Portfolio Selection
Tim Van Erven
,
Dirk Van der Hoeven
,
Wojciech Kotłowski
,
Wouter M. Koolen
NeurIPS
2019
User-Specified Local Differential Privacy in Unconstrained Adaptive Online Learning
Dirk van der Hoeven
COLT
2018
The Many Faces of Exponential Weights in Online Learning
Dirk van der Hoeven
,
Tim van Erven
,
Wojciech Kotlowski