ML Anthology
Authors
Search
About
van der Smagt, Patrick
24 publications
TMLR
2025
Inherently Robust Control Through Maximum-Entropy Learning-Based Rollout
Felix Bok
,
Atanas Mirchev
,
Baris Kayalibay
,
Ole Jonas Wenzel
,
Patrick van der Smagt
,
Justin Bayer
TMLR
2025
Overcoming Knowledge Barriers: Online Imitation Learning from Visual Observation with Pretrained World Models
Xingyuan Zhang
,
Philip Becker-Ehmck
,
Patrick van der Smagt
,
Maximilian Karl
NeurIPS
2024
Constrained Latent Action Policies for Model-Based Offline Reinforcement Learning
Marvin Alles
,
Philip Becker-Ehmck
,
Patrick van der Smagt
,
Maximilian Karl
CoRL
2024
Exploring Under Constraints with Model-Based Actor-Critic and Safety Filters
Ahmed Agha
,
Baris Kayalibay
,
Atanas Mirchev
,
Patrick van der Smagt
,
Justin Bayer
ICMLW
2024
Overcoming Knowledge Barriers: Online Imitation Learning from Observation with Pretrained World Models
Xingyuan Zhang
,
Philip Becker-Ehmck
,
Patrick van der Smagt
,
Maximilian Karl
NeurIPS
2023
Action Inference by Maximising Evidence: Zero-Shot Imitation from Observation with World Models
Xingyuan Zhang
,
Philip Becker-Ehmck
,
Patrick van der Smagt
,
Maximilian Karl
ICLRW
2023
Action Inference by Maximising Evidence: Zero-Shot Imitation from Observation with World Models
Xingyuan Zhang
,
Philip Becker-Ehmck
,
Patrick van der Smagt
,
Maximilian Karl
L4DC
2023
CLAS: Coordinating Multi-Robot Manipulation with Central Latent Action Spaces
Elie Aljalbout
,
Maximilian Karl
,
Patrick van der Smagt
L4DC
2023
Filter-Aware Model-Predictive Control
Baris Kayalibay
,
Atanas Mirchev
,
Ahmed Agha
,
Patrick van der Smagt
,
Justin Bayer
CoRL
2022
PRISM: Probabilistic Real-Time Inference in Spatial World Models
Atanas Mirchev
,
Baris Kayalibay
,
Ahmed Agha
,
Patrick van der Smagt
,
Daniel Cremers
,
Justin Bayer
ICMLW
2021
Exploration via Empowerment Gain: Combining Novelty, Surprise and Learning Progress
Philip Becker-Ehmck
,
Maximilian Karl
,
Jan Peters
,
Patrick van der Smagt
NeurIPS
2021
Latent Matters: Learning Deep State-Space Models
Alexej Klushyn
,
Richard Kurle
,
Maximilian Soelch
,
Botond Cseke
,
Patrick van der Smagt
ICLR
2021
Mind the Gap When Conditioning Amortised Inference in Sequential Latent-Variable Models
Justin Bayer
,
Maximilian Soelch
,
Atanas Mirchev
,
Baris Kayalibay
,
Patrick van der Smagt
ICLR
2021
Variational State-Space Models for Localisation and Dense 3D Mapping in 6 DoF
Atanas Mirchev
,
Baris Kayalibay
,
Patrick van der Smagt
,
Justin Bayer
ICLR
2020
Continual Learning with Bayesian Neural Networks for Non-Stationary Data
Richard Kurle
,
Botond Cseke
,
Alexej Klushyn
,
Patrick van der Smagt
,
Stephan Günnemann
ICML
2020
Learning Flat Latent Manifolds with VAEs
Nutan Chen
,
Alexej Klushyn
,
Francesco Ferroni
,
Justin Bayer
,
Patrick Van Der Smagt
NeurIPS
2019
Learning Hierarchical Priors in VAEs
Alexej Klushyn
,
Nutan Chen
,
Richard Kurle
,
Botond Cseke
,
Patrick van der Smagt
AAAI
2019
Multi-Source Neural Variational Inference
Richard Kurle
,
Stephan Günnemann
,
Patrick van der Smagt
ICML
2019
Switching Linear Dynamics for Variational Bayes Filtering
Philip Becker-Ehmck
,
Jan Peters
,
Patrick Van Der Smagt
AISTATS
2018
Metrics for Deep Generative Models
Nutan Chen
,
Alexej Klushyn
,
Richard Kurle
,
Xueyan Jiang
,
Justin Bayer
,
Patrick van der Smagt
ICLR
2017
Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
Maximilian Karl
,
Maximilian Soelch
,
Justin Bayer
,
Patrick van der Smagt
ICCV
2015
FlowNet: Learning Optical Flow with Convolutional Networks
Alexey Dosovitskiy
,
Philipp Fischer
,
Eddy Ilg
,
Philip Hausser
,
Caner Hazirbas
,
Vladimir Golkov
,
Patrick van der Smagt
,
Daniel Cremers
,
Thomas Brox
ICLR
2014
On Fast Dropout and Its Applicability to Recurrent Networks
Justin Bayer
,
Christian Osendorfer
,
Nutan Chen
,
Sebastian Urban
,
Patrick van der Smagt
ICLR
2013
Unsupervised Feature Learning for Low-Level Local Image Descriptors
Christian Osendorfer
,
Justin Bayer
,
Patrick van der Smagt