ML Anthology
Authors
Search
About
Van Der Wilk, Mark
43 publications
ICLR
2025
A Meta-Learning Approach to Bayesian Causal Discovery
Anish Dhir
,
Matthew Ashman
,
James Requeima
,
Mark van der Wilk
ICML
2025
Adjusting Model Size in Continual Gaussian Processes: How Big Is Big Enough?
Guiomar Pescador-Barrios
,
Sarah Lucie Filippi
,
Mark Van Der Wilk
ICML
2025
Continuous Bayesian Model Selection for Multivariate Causal Discovery
Anish Dhir
,
Ruby Sedgwick
,
Avinash Kori
,
Ben Glocker
,
Mark Van Der Wilk
NeurIPS
2025
Estimating Interventional Distributions with Uncertain Causal Graphs Through Meta-Learning
Anish Dhir
,
Cristiana Diaconu
,
Valentinian Mihai Lungu
,
James Requeima
,
Richard E. Turner
,
Mark van der Wilk
ICML
2025
Rethinking Aleatoric and Epistemic Uncertainty
Freddie Bickford Smith
,
Jannik Kossen
,
Eleanor Trollope
,
Mark Van Der Wilk
,
Adam Foster
,
Tom Rainforth
TMLR
2025
System-Aware Neural ODE Processes for Few-Shot Bayesian Optimization
Jixiang Qing
,
Rebecca D. Langdon
,
Robert Matthew Lee
,
Behrang Shafei
,
Mark van der Wilk
,
Calvin Tsay
,
Ruth Misener
NeurIPSW
2024
Adjusting Model Size in Continual Gaussian Processes: How Big Is Big Enough?
Guiomar Pescador-Barrios
,
Sarah Lucie Filippi
,
Mark van der Wilk
ICML
2024
Bivariate Causal Discovery Using Bayesian Model Selection
Anish Dhir
,
Samuel Power
,
Mark Van Der Wilk
NeurIPSW
2024
Inverse-Free Sparse Variational Gaussian Processes
Stefano Cortinovis
,
Laurence Aitchison
,
James Hensman
,
Stefanos Eleftheriadis
,
Mark van der Wilk
ICML
2024
Learning in Deep Factor Graphs with Gaussian Belief Propagation
Seth Nabarro
,
Mark Van Der Wilk
,
Andrew Davison
NeurIPS
2024
Noether's Razor: Learning Conserved Quantities
Tycho F. A. van der Ouderaa
,
Mark van der Wilk
,
Pim de Haan
JMLR
2024
Numerically Stable Sparse Gaussian Processes via Minimum Separation Using Cover Trees
Alexander Terenin
,
David R. Burt
,
Artem Artemev
,
Seth Flaxman
,
Mark van der Wilk
,
Carl Edward Rasmussen
,
Hong Ge
NeurIPSW
2024
Rethinking Aleatoric and Epistemic Uncertainty
Freddie Bickford Smith
,
Jannik Kossen
,
Eleanor Trollope
,
Mark van der Wilk
,
Adam Foster
,
Tom Rainforth
NeurIPS
2024
Transition Constrained Bayesian Optimization via Markov Decision Processes
Jose Pablo Folch
,
Calvin Tsay
,
Robert M Lee
,
Behrang Shafei
,
Weronika Ormaniec
,
Andreas Krause
,
Mark van der Wilk
,
Ruth Misener
,
Mojmír Mutný
ICMLW
2024
Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks
Yoav Gelberg
,
Tycho F. A. van der Ouderaa
,
Mark van der Wilk
,
Yarin Gal
NeurIPS
2023
Learning Layer-Wise Equivariances Automatically Using Gradients
Tycho van der Ouderaa
,
Alexander Immer
,
Mark van der Wilk
NeurIPSW
2023
Practical Path-Based Bayesian Optimization
Jose Pablo Folch
,
James A C Odgers
,
Shiqiang Zhang
,
Robert Matthew Lee
,
Behrang Shafei
,
David Walz
,
Calvin Tsay
,
Mark van der Wilk
,
Ruth Misener
ICML
2023
Stochastic Marginal Likelihood Gradients Using Neural Tangent Kernels
Alexander Immer
,
Tycho F. A. Van Der Ouderaa
,
Mark Van Der Wilk
,
Gunnar Ratsch
,
Bernhard Schölkopf
AISTATS
2022
Last Layer Marginal Likelihood for Invariance Learning
Pola Schwöbel
,
Martin Jørgensen
,
Sebastian W. Ober
,
Mark Van Der Wilk
ICLR
2022
Bayesian Neural Network Priors Revisited
Vincent Fortuin
,
Adrià Garriga-Alonso
,
Sebastian W. Ober
,
Florian Wenzel
,
Gunnar Ratsch
,
Richard E Turner
,
Mark van der Wilk
,
Laurence Aitchison
NeurIPSW
2022
Causal Discovery Using Marginal Likelihood
Anish Dhir
,
Mark van der Wilk
NeurIPS
2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
,
Tycho van der Ouderaa
,
Gunnar Rätsch
,
Vincent Fortuin
,
Mark van der Wilk
NeurIPS
2022
Memory Safe Computations with XLA Compiler
Artem Artemev
,
Yuze An
,
Tilman Roeder
,
Mark van der Wilk
NeurIPS
2022
Relaxing Equivariance Constraints with Non-Stationary Continuous Filters
Tycho van der Ouderaa
,
David W. Romero
,
Mark van der Wilk
NeurIPS
2022
SnAKe: Bayesian Optimization with Pathwise Exploration
Jose Pablo Folch
,
Shiqiang Zhang
,
Robert Lee
,
Behrang Shafei
,
David Walz
,
Calvin Tsay
,
Mark van der Wilk
,
Ruth Misener
NeurIPSW
2022
Sparse Convolutions on Lie Groups
Tycho F.A. van der Ouderaa
,
Mark van der Wilk
NeurIPSW
2021
Barely Biased Learning for Gaussian Process Regression
David R. Burt
,
Artem Artemev
,
Mark van der Wilk
NeurIPS
2021
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Vincent Dutordoir
,
James Hensman
,
Mark van der Wilk
,
Carl Henrik Ek
,
Zoubin Ghahramani
,
Nicolas Durrande
NeurIPS
2021
Speedy Performance Estimation for Neural Architecture Search
Robin Ru
,
Clare Lyle
,
Lisa Schut
,
Miroslav Fil
,
Mark van der Wilk
,
Yarin Gal
NeurIPS
2020
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
,
Lisa Schut
,
Robin Ru
,
Yarin Gal
,
Mark van der Wilk
NeurIPSW
2020
Bayesian Neural Network Priors Revisited
Vincent Fortuin
,
Adrià Garriga-Alonso
,
Florian Wenzel
,
Gunnar Ratsch
,
Richard E Turner
,
Mark van der Wilk
,
Laurence Aitchison
JMLR
2020
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
,
Carl Edward Rasmussen
,
Mark van der Wilk
NeurIPS
2020
Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty
Miguel Monteiro
,
Loic Le Folgoc
,
Daniel Coelho de Castro
,
Nick Pawlowski
,
Bernardo Marques
,
Konstantinos Kamnitsas
,
Mark van der Wilk
,
Ben Glocker
NeurIPS
2019
Bayesian Layers: A Module for Neural Network Uncertainty
Dustin Tran
,
Mike Dusenberry
,
Mark van der Wilk
,
Danijar Hafner
ICML
2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
,
Mark Van Der Wilk
,
James Hensman
,
Carl Edward Rasmussen
ICML
2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
David Burt
,
Carl Edward Rasmussen
,
Mark Van Der Wilk
NeurIPS
2019
Scalable Bayesian Dynamic Covariance Modeling with Variational Wishart and Inverse Wishart Processes
Creighton Heaukulani
,
Mark van der Wilk
NeurIPS
2018
Learning Invariances Using the Marginal Likelihood
Mark van der Wilk
,
Matthias Bauer
,
St John
,
James Hensman
IJCAI
2017
Concrete Problems for Autonomous Vehicle Safety: Advantages of Bayesian Deep Learning
Rowan McAllister
,
Yarin Gal
,
Alex Kendall
,
Mark van der Wilk
,
Amar Shah
,
Roberto Cipolla
,
Adrian Weller
NeurIPS
2017
Convolutional Gaussian Processes
Mark van der Wilk
,
Carl Edward Rasmussen
,
James Hensman
MLOSS
2017
GPflow: A Gaussian Process Library Using TensorFlow
Alexander G. de G. Matthews
,
Mark van der Wilk
,
Tom Nickson
,
Keisuke Fujii
,
Alexis Boukouvalas
,
Pablo León-Villagrá
,
Zoubin Ghahramani
,
James Hensman
NeurIPS
2016
Understanding Probabilistic Sparse Gaussian Process Approximations
Matthias Bauer
,
Mark van der Wilk
,
Carl Edward Rasmussen
NeurIPS
2014
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
Yarin Gal
,
Mark van der Wilk
,
Carl Edward Rasmussen