ML Anthology
Authors
Search
About
Vechev, Martin
109 publications
ICML
2025
A Unified Approach to Routing and Cascading for LLMs
Jasper Dekoninck
,
Maximilian Baader
,
Martin Vechev
ICLRW
2025
A Unified Approach to Routing and Cascading for LLMs
Jasper Dekoninck
,
Maximilian Baader
,
Martin Vechev
ICML
2025
Automated Benchmark Generation for Repository-Level Coding Tasks
Konstantinos Vergopoulos
,
Mark Niklas Mueller
,
Martin Vechev
ICLRW
2025
Automated Benchmark Generation for Repository-Level Coding Tasks
Konstantinos Vergopoulos
,
Mark Niklas Mueller
,
Martin Vechev
ICML
2025
Average Certified Radius Is a Poor Metric for Randomized Smoothing
Chenhao Sun
,
Yuhao Mao
,
Mark Niklas Mueller
,
Martin Vechev
ICML
2025
BaxBench: Can LLMs Generate Correct and Secure Backends?
Mark Vero
,
Niels Mündler
,
Victor Chibotaru
,
Veselin Raychev
,
Maximilian Baader
,
Nikola Jovanović
,
Jingxuan He
,
Martin Vechev
ICLRW
2025
BaxBench: Can LLMs Generate Correct and Secure Backends?
Mark Vero
,
Niels Mündler
,
Victor Chibotaru
,
Veselin Raychev
,
Maximilian Baader
,
Nikola Jovanović
,
Jingxuan He
,
Martin Vechev
ICML
2025
Black-Box Adversarial Attacks on LLM-Based Code Completion
Slobodan Jenko
,
Niels Mündler
,
Jingxuan He
,
Mark Vero
,
Martin Vechev
ICLRW
2025
Black-Box Adversarial Attacks on LLM-Based Code Completion
Slobodan Jenko
,
Niels Mündler
,
Jingxuan He
,
Mark Vero
,
Martin Vechev
ICLR
2025
Black-Box Detection of Language Model Watermarks
Thibaud Gloaguen
,
Nikola Jovanović
,
Robin Staab
,
Martin Vechev
ICML
2025
CTBench: A Library and Benchmark for Certified Training
Yuhao Mao
,
Stefan Balauca
,
Martin Vechev
ICML
2025
Discovering Spoofing Attempts on Language Model Watermarks
Thibaud Gloaguen
,
Nikola Jovanović
,
Robin Staab
,
Martin Vechev
ICLRW
2025
Discovering Spoofing Attempts on Language Model Watermarks
Thibaud Gloaguen
,
Nikola Jovanović
,
Robin Staab
,
Martin Vechev
ICLR
2025
GRAIN: Exact Graph Reconstruction from Gradients
Maria Drencheva
,
Ivo Petrov
,
Maximilian Baader
,
Dimitar Iliev Dimitrov
,
Martin Vechev
TMLR
2025
Gaussian Loss Smoothing Enables Certified Training with Tight Convex Relaxations
Stefan Balauca
,
Mark Niklas Mueller
,
Yuhao Mao
,
Maximilian Baader
,
Marc Fischer
,
Martin Vechev
ICLR
2025
Language Models Are Advanced Anonymizers
Robin Staab
,
Mark Vero
,
Mislav Balunovic
,
Martin Vechev
NeurIPS
2025
MathArena: Evaluating LLMs on Uncontaminated Math Competitions
Mislav Balunovic
,
Jasper Dekoninck
,
Ivo Petrov
,
Nikola Jovanović
,
Martin Vechev
ICML
2025
MathConstruct: Challenging LLM Reasoning with Constructive Proofs
Mislav Balunovic
,
Jasper Dekoninck
,
Nikola Jovanović
,
Ivo Petrov
,
Martin Vechev
ICLRW
2025
MathConstruct: Challenging LLM Reasoning with Constructive Proofs
Jasper Dekoninck
,
Mislav Balunovic
,
Nikola Jovanović
,
Ivo Petrov
,
Martin Vechev
ICML
2025
Mind the Gap: A Practical Attack on GGUF Quantization
Kazuki Egashira
,
Robin Staab
,
Mark Vero
,
Jingxuan He
,
Martin Vechev
ICLRW
2025
Mind the Gap: A Practical Attack on GGUF Quantization
Kazuki Egashira
,
Robin Staab
,
Mark Vero
,
Jingxuan He
,
Martin Vechev
NeurIPS
2025
MixAT: Combining Continuous and Discrete Adversarial Training for LLMs
Csaba Dékány
,
Stefan Balauca
,
Dimitar Iliev Dimitrov
,
Robin Staab
,
Martin Vechev
ICLR
2025
Polyrating: A Cost-Effective and Bias-Aware Rating System for LLM Evaluation
Jasper Dekoninck
,
Maximilian Baader
,
Martin Vechev
ICLRW
2025
Towards Watermarking of Open-Source LLMs
Thibaud Gloaguen
,
Nikola Jovanović
,
Robin Staab
,
Martin Vechev
ICLRW
2025
Type-Constrained Code Generation with Language Models
Niels Mündler
,
Jingxuan He
,
Hao Wang
,
Koushik Sen
,
Dawn Song
,
Martin Vechev
ICLR
2025
Ward: Provable RAG Dataset Inference via LLM Watermarks
Nikola Jovanović
,
Robin Staab
,
Maximilian Baader
,
Martin Vechev
NeurIPS
2025
Watermarking Autoregressive Image Generation
Nikola Jovanović
,
Ismail Labiad
,
Tomas Soucek
,
Martin Vechev
,
Pierre Fernandez
NeurIPS
2024
A Synthetic Dataset for Personal Attribute Inference
Hanna Yukhymenko
,
Robin Staab
,
Mark Vero
,
Martin Vechev
ICMLW
2024
AI Agents with Formal Security Guarantees
Mislav Balunovic
,
Luca Beurer-Kellner
,
Marc Fischer
,
Martin Vechev
ICLR
2024
Beyond Memorization: Violating Privacy via Inference with Large Language Models
Robin Staab
,
Mark Vero
,
Mislav Balunovic
,
Martin Vechev
ICMLW
2024
Black-Box Detection of Language Model Watermarks
Thibaud Gloaguen
,
Nikola Jovanović
,
Robin Staab
,
Martin Vechev
ICMLW
2024
Black-Box Detection of Language Model Watermarks
Thibaud Gloaguen
,
Nikola Jovanović
,
Robin Staab
,
Martin Vechev
ICMLW
2024
Code Agents Are State of the Art Software Testers
Niels Mündler
,
Mark Niklas Mueller
,
Jingxuan He
,
Martin Vechev
ICMLW
2024
Code Agents Are State of the Art Software Testers
Niels Mündler
,
Mark Niklas Mueller
,
Jingxuan He
,
Martin Vechev
NeurIPS
2024
ConStat: Performance-Based Contamination Detection in Large Language Models
Jasper Dekoninck
,
Mark Niklas Müller
,
Martin Vechev
NeurIPSW
2024
Constraint-Based Synthetic Data Generation for LLM Mathematical Reasoning
Timofey Fedoseev
,
Dimitar Iliev Dimitrov
,
Timon Gehr
,
Martin Vechev
ICLR
2024
Controlled Text Generation via Language Model Arithmetic
Jasper Dekoninck
,
Marc Fischer
,
Luca Beurer-Kellner
,
Martin Vechev
ICML
2024
CuTS: Customizable Tabular Synthetic Data Generation
Mark Vero
,
Mislav Balunovic
,
Martin Vechev
NeurIPS
2024
DAGER: Exact Gradient Inversion for Large Language Models
Ivo Petrov
,
Dimitar I. Dimitrov
,
Maximilian Baader
,
Mark Niklas Müller
,
Martin Vechev
NeurIPS
2024
Exploiting LLM Quantization
Kazuki Egashira
,
Mark Vero
,
Robin Staab
,
Jingxuan He
,
Martin Vechev
ICMLW
2024
Exploiting LLM Quantization
Kazuki Egashira
,
Mark Vero
,
Robin Staab
,
Jingxuan He
,
Martin Vechev
ICLR
2024
Expressivity of ReLU-Networks Under Convex Relaxations
Maximilian Baader
,
Mark Niklas Mueller
,
Yuhao Mao
,
Martin Vechev
ICML
2024
Guiding LLMs the Right Way: Fast, Non-Invasive Constrained Generation
Luca Beurer-Kellner
,
Marc Fischer
,
Martin Vechev
ICLR
2024
Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning
Kostadin Garov
,
Dimitar Iliev Dimitrov
,
Nikola Jovanović
,
Martin Vechev
ICML
2024
Instruction Tuning for Secure Code Generation
Jingxuan He
,
Mark Vero
,
Gabriela Krasnopolska
,
Martin Vechev
ICLRW
2024
Instruction Tuning for Secure Code Generation
Jingxuan He
,
Mark Vero
,
Gabriela Krasnopolska
,
Martin Vechev
ICLRW
2024
Large Language Models Are Anonymizers
Robin Staab
,
Mark Vero
,
Mislav Balunovic
,
Martin Vechev
NeurIPS
2024
Private Attribute Inference from Images with Vision-Language Models
Batuhan Tömekçe
,
Mark Vero
,
Robin Staab
,
Martin Vechev
ICMLW
2024
Private Attribute Inference from Images with Vision-Language Models
Batuhan Tömekçe
,
Mark Vero
,
Robin Staab
,
Martin Vechev
ICML
2024
Prompt Sketching for Large Language Models
Luca Beurer-Kellner
,
Mark Niklas Mueller
,
Marc Fischer
,
Martin Vechev
NeurIPS
2024
SPEAR: Exact Gradient Inversion of Batches in Federated Learning
Dimitar I. Dimitrov
,
Maximilian Baader
,
Mark Niklas Müller
,
Martin Vechev
NeurIPS
2024
SWT-Bench: Testing and Validating Real-World Bug-Fixes with Code Agents
Niels Mündler
,
Mark Niklas Müller
,
Jingxuan He
,
Martin Vechev
ICLR
2024
Self-Contradictory Hallucinations of Large Language Models: Evaluation, Detection and Mitigation
Niels Mündler
,
Jingxuan He
,
Slobodan Jenko
,
Martin Vechev
ICLR
2024
Understanding Certified Training with Interval Bound Propagation
Yuhao Mao
,
Mark Niklas Mueller
,
Marc Fischer
,
Martin Vechev
ICML
2024
Watermark Stealing in Large Language Models
Nikola Jovanović
,
Robin Staab
,
Martin Vechev
ICLRW
2024
Watermark Stealing in Large Language Models
Nikola Jovanović
,
Robin Staab
,
Martin Vechev
NeurIPS
2023
Automated Classification of Model Errors on ImageNet
Momchil Peychev
,
Mark Müller
,
Marc Fischer
,
Martin Vechev
ICLR
2023
Certified Training: Small Boxes Are All You Need
Mark Niklas Mueller
,
Franziska Eckert
,
Marc Fischer
,
Martin Vechev
NeurIPS
2023
Connecting Certified and Adversarial Training
Yuhao Mao
,
Mark Müller
,
Marc Fischer
,
Martin Vechev
ICLR
2023
Efficient Certified Training and Robustness Verification of Neural ODEs
Mustafa Zeqiri
,
Mark Niklas Mueller
,
Marc Fischer
,
Martin Vechev
ICML
2023
FARE: Provably Fair Representation Learning with Practical Certificates
Nikola Jovanović
,
Mislav Balunovic
,
Dimitar Iliev Dimitrov
,
Martin Vechev
ICMLW
2023
Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning
Kostadin Garov
,
Dimitar Iliev Dimitrov
,
Nikola Jovanović
,
Martin Vechev
ICLR
2023
Human-Guided Fair Classification for Natural Language Processing
Florian E. Dorner
,
Momchil Peychev
,
Nikola Konstantinov
,
Naman Goel
,
Elliott Ash
,
Martin Vechev
ICMLW
2023
Incentivizing Honesty Among Competitors in Collaborative Learning
Florian E. Dorner
,
Nikola Konstantinov
,
Georgi Stoyanov Pashaliev
,
Martin Vechev
NeurIPS
2023
Incentivizing Honesty Among Competitors in Collaborative Learning and Optimization
Florian E. Dorner
,
Nikola Konstantinov
,
Georgi Pashaliev
,
Martin Vechev
ICMLW
2023
Large Language Models for Code: Security Hardening and Adversarial Testing
Jingxuan He
,
Martin Vechev
ICML
2023
TabLeak: Tabular Data Leakage in Federated Learning
Mark Vero
,
Mislav Balunovic
,
Dimitar Iliev Dimitrov
,
Martin Vechev
NeurIPS
2022
(De-)Randomized Smoothing for Decision Stump Ensembles
Miklós Horváth
,
Mark Müller
,
Marc Fischer
,
Martin Vechev
ICLR
2022
Bayesian Framework for Gradient Leakage
Mislav Balunovic
,
Dimitar Iliev Dimitrov
,
Robin Staab
,
Martin Vechev
ICLR
2022
Boosting Randomized Smoothing with Variance Reduced Classifiers
Miklós Z. Horváth
,
Mark Niklas Mueller
,
Marc Fischer
,
Martin Vechev
NeurIPSW
2022
Certified Training: Small Boxes Are All You Need
Mark Niklas Mueller
,
Franziska Eckert
,
Marc Fischer
,
Martin Vechev
ICLR
2022
Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound
Claudio Ferrari
,
Mark Niklas Mueller
,
Nikola Jovanović
,
Martin Vechev
TMLR
2022
Data Leakage in Federated Averaging
Dimitar Iliev Dimitrov
,
Mislav Balunovic
,
Nikola Konstantinov
,
Martin Vechev
NeurIPSW
2022
Efficient Robustness Verification of Neural Ordinary Differential Equations
Mustafa Zeqiri
,
Mark Niklas Mueller
,
Marc Fischer
,
Martin Vechev
NeurIPSW
2022
FARE: Provably Fair Representation Learning
Nikola Jovanović
,
Mislav Balunovic
,
Dimitar Iliev Dimitrov
,
Martin Vechev
ICLR
2022
Fair Normalizing Flows
Mislav Balunovic
,
Anian Ruoss
,
Martin Vechev
NeurIPSW
2022
Generating Intuitive Fairness Specifications for Natural Language Processing
Florian E. Dorner
,
Momchil Peychev
,
Nikola Konstantinov
,
Naman Goel
,
Elliott Ash
,
Martin Vechev
NeurIPSW
2022
Just Avoid Robust Inaccuracy: Boosting Robustness Without Sacrificing Accuracy
Yannick Merkli
,
Pavol Bielik
,
Petar Tsankov
,
Martin Vechev
NeurIPS
2022
LAMP: Extracting Text from Gradients with Language Model Priors
Mislav Balunovic
,
Dimitar Dimitrov
,
Nikola Jovanović
,
Martin Vechev
ECCV
2022
Latent Space Smoothing for Individually Fair Representations
Momchil Peychev
,
Anian Ruoss
,
Mislav Balunović
,
Maximilian Baader
,
Martin Vechev
NeurIPS
2022
Learning to Configure Computer Networks with Neural Algorithmic Reasoning
Luca Beurer-Kellner
,
Martin Vechev
,
Laurent Vanbever
,
Petar Veličković
ICML
2022
On Distribution Shift in Learning-Based Bug Detectors
Jingxuan He
,
Luca Beurer-Kellner
,
Martin Vechev
TMLR
2022
On the Paradox of Certified Training
Nikola Jovanović
,
Mislav Balunovic
,
Maximilian Baader
,
Martin Vechev
ICLR
2022
Provably Robust Adversarial Examples
Dimitar Iliev Dimitrov
,
Gagandeep Singh
,
Timon Gehr
,
Martin Vechev
TMLR
2022
The Fundamental Limits of Neural Networks for Interval Certified Robustness
Matthew B Mirman
,
Maximilian Baader
,
Martin Vechev
NeurIPS
2021
Automated Discovery of Adaptive Attacks on Adversarial Defenses
Chengyuan Yao
,
Pavol Bielik
,
Petar Tsankov
,
Martin Vechev
ICMLW
2021
Automated Discovery of Adaptive Attacks on Adversarial Defenses
Chengyuan Yao
,
Pavol Bielik
,
Petar Tsankov
,
Martin Vechev
ICLR
2021
Certify or Predict: Boosting Certified Robustness with Compositional Architectures
Mark Niklas Mueller
,
Mislav Balunovic
,
Martin Vechev
ICML
2021
PODS: Policy Optimization via Differentiable Simulation
Miguel Angel Zamora Mora
,
Momchil Peychev
,
Sehoon Ha
,
Martin Vechev
,
Stelian Coros
ICCV
2021
Robustness Certification for Point Cloud Models
Tobias Lorenz
,
Anian Ruoss
,
Mislav Balunović
,
Gagandeep Singh
,
Martin Vechev
ICML
2021
Scalable Certified Segmentation via Randomized Smoothing
Marc Fischer
,
Maximilian Baader
,
Martin Vechev
ICML
2021
TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer
Berkay Berabi
,
Jingxuan He
,
Veselin Raychev
,
Martin Vechev
ICML
2020
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models
Raphaël Dang-Nhu
,
Gagandeep Singh
,
Pavol Bielik
,
Martin Vechev
ICML
2020
Adversarial Robustness for Code
Pavol Bielik
,
Martin Vechev
ICLR
2020
Adversarial Training and Provable Defenses: Bridging the Gap
Mislav Balunovic
,
Martin Vechev
NeurIPS
2020
Certified Defense to Image Transformations via Randomized Smoothing
Marc Fischer
,
Maximilian Baader
,
Martin Vechev
ICLR
2020
Guiding Program Synthesis by Learning to Generate Examples
Larissa Laich
,
Pavol Bielik
,
Martin Vechev
NeurIPS
2020
Learning Certified Individually Fair Representations
Anian Ruoss
,
Mislav Balunovic
,
Marc Fischer
,
Martin Vechev
ICLR
2020
Universal Approximation with Certified Networks
Maximilian Baader
,
Matthew Mirman
,
Martin Vechev
NeurIPS
2019
Beyond the Single Neuron Convex Barrier for Neural Network Certification
Gagandeep Singh
,
Rupanshu Ganvir
,
Markus Püschel
,
Martin Vechev
ICLR
2019
Boosting Robustness Certification of Neural Networks
Gagandeep Singh
,
Timon Gehr
,
Markus Püschel
,
Martin Vechev
NeurIPS
2019
Certifying Geometric Robustness of Neural Networks
Mislav Balunovic
,
Maximilian Baader
,
Gagandeep Singh
,
Timon Gehr
,
Martin Vechev
ICML
2019
DL2: Training and Querying Neural Networks with Logic
Marc Fischer
,
Mislav Balunovic
,
Dana Drachsler-Cohen
,
Timon Gehr
,
Ce Zhang
,
Martin Vechev
ICML
2018
Differentiable Abstract Interpretation for Provably Robust Neural Networks
Matthew Mirman
,
Timon Gehr
,
Martin Vechev
NeurIPS
2018
Fast and Effective Robustness Certification
Gagandeep Singh
,
Timon Gehr
,
Matthew Mirman
,
Markus Püschel
,
Martin Vechev
NeurIPS
2018
Learning to Solve SMT Formulas
Mislav Balunovic
,
Pavol Bielik
,
Martin Vechev
ICML
2018
Training Neural Machines with Trace-Based Supervision
Matthew Mirman
,
Dimitar Dimitrov
,
Pavle Djordjevic
,
Timon Gehr
,
Martin Vechev
COLT
2017
Learning Disjunctions of Predicates
Nader H. Bshouty
,
Dana Drachsler-Cohen
,
Martin Vechev
,
Eran Yahav
ICML
2016
PHOG: Probabilistic Model for Code
Pavol Bielik
,
Veselin Raychev
,
Martin Vechev