ML Anthology
Authors
Search
About
Velingker, Ameya
12 publications
NeurIPSW
2024
A Theory for Compressibility of Graph Transformers for Transductive Learning
Hamed Shirzad
,
Honghao Lin
,
Ameya Velingker
,
Balaji Venkatachalam
,
David Woodruff
,
Danica J. Sutherland
NeurIPS
2024
Even Sparser Graph Transformers
Hamed Shirzad
,
Honghao Lin
,
Balaji Venkatachalam
,
Ameya Velingker
,
David P. Woodruff
,
Danica J. Sutherland
ICLR
2024
Locality-Aware Graph Rewiring in GNNs
Federico Barbero
,
Ameya Velingker
,
Amin Saberi
,
Michael M. Bronstein
,
Francesco Di Giovanni
ICML
2024
Weisfeiler-Leman at the Margin: When More Expressivity Matters
Billy Joe Franks
,
Christopher Morris
,
Ameya Velingker
,
Floris Geerts
NeurIPS
2023
Affinity-Aware Graph Networks
Ameya Velingker
,
Ali Sinop
,
Ira Ktena
,
Petar Veličković
,
Sreenivas Gollapudi
ICMLW
2023
Efficient Location Sampling Algorithms for Road Networks
Sara Ahmadian
,
Kostas Kollias
,
Ameya Velingker
,
Sreenivas Gollapudi
,
Vivek Kumar
,
Santhoshini Velusamy
ICML
2023
Exphormer: Sparse Transformers for Graphs
Hamed Shirzad
,
Ameya Velingker
,
Balaji Venkatachalam
,
Danica J. Sutherland
,
Ali Kemal Sinop
ICML
2023
Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix Factorization
Ameya Velingker
,
Maximilian Vötsch
,
David Woodruff
,
Samson Zhou
NeurIPSW
2023
Low-Width Approximations and Sparsification for Scaling Graph Transformers
Hamed Shirzad
,
Balaji Venkatachalam
,
Ameya Velingker
,
Danica Sutherland
,
David Woodruff
COLT
2022
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
,
Pasin Manurangsi
,
Ameya Velingker
AISTATS
2020
Scaling up Kernel Ridge Regression via Locality Sensitive Hashing
Amir Zandieh
,
Navid Nouri
,
Ameya Velingker
,
Michael Kapralov
,
Ilya Razenshteyn
ICML
2017
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees
Haim Avron
,
Michael Kapralov
,
Cameron Musco
,
Christopher Musco
,
Ameya Velingker
,
Amir Zandieh