Vinayak, Ramya Korlakai

24 publications

ICCV 2025 CuRe: Cultural Gaps in the Long Tail of Text-to-Image Systems Aniket Rege, Zinnia Nie, Mahesh Ramesh, Unmesh Raskar, Zhuoran Yu, Aditya Kusupati, Yong Jae Lee, Ramya Korlakai Vinayak
UAI 2025 Metric Learning in an RKHS Gokcan Tatli, Yi Chen, Blake Mason, Robert D Nowak, Ramya Korlakai Vinayak
ICLR 2025 PAL: Sample-Efficient Personalized Reward Modeling for Pluralistic Alignment Daiwei Chen, Yi Chen, Aniket Rege, Zhi Wang, Ramya Korlakai Vinayak
ICML 2025 Rethinking Confidence Scores and Thresholds in Pseudolabeling-Based SSL Harit Vishwakarma, Yi Chen, Satya Sai Srinath Namburi Gnvv, Sui Jiet Tay, Ramya Korlakai Vinayak, Frederic Sala
AAAI 2024 Limitations of Face Image Generation Harrison Rosenberg, Shimaa Ahmed, Guruprasad V. Ramesh, Kassem Fawaz, Ramya Korlakai Vinayak
UAI 2024 Metric Learning from Limited Pairwise Preference Comparisons Zhi Wang, Geelon So, Ramya Korlakai Vinayak
ICMLW 2024 Modeling the Plurality of Human Preferences via Ideal Points Daiwei Chen, Yi Chen, Aniket Rege, Ramya Korlakai Vinayak
ICMLW 2024 Modeling the Plurality of Human Preferences via Ideal Points Daiwei Chen, Yi Chen, Aniket Rege, Ramya Korlakai Vinayak
NeurIPSW 2024 PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences Daiwei Chen, Yi Chen, Aniket Rege, Ramya Korlakai Vinayak
NeurIPSW 2024 PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences Daiwei Chen, Yi Chen, Aniket Rege, Ramya Korlakai Vinayak
NeurIPSW 2024 PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences Daiwei Chen, Yi Chen, Aniket Rege, Ramya Korlakai Vinayak
NeurIPSW 2024 PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences Daiwei Chen, Yi Chen, Aniket Rege, Ramya Korlakai Vinayak
NeurIPSW 2024 PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences Daiwei Chen, Yi Chen, Aniket Rege, Ramya Korlakai Vinayak
NeurIPSW 2024 PabLO: Improving Semi-Supervised Learning with Pseudolabeling Optimization Harit Vishwakarma, Yi Chen, Satya Sai Srinath Namburi Gnvv, Sui Jiet Tay, Ramya Korlakai Vinayak, Frederic Sala
NeurIPS 2024 Pearls from Pebbles: Improved Confidence Functions for Auto-Labeling Harit Vishwakarma, Yi Chen, Sui Jiet Tay, Satya Sai Srinath Namburi, Frederic Sala, Ramya Korlakai Vinayak
NeurIPSW 2024 Pearls from Pebbles: Improved Confidence Functions for Auto-Labeling Harit Vishwakarma, Yi Chen, Sui Jiet Tay, Satya Sai Srinath Namburi Gnvv, Frederic Sala, Ramya Korlakai Vinayak
ICMLW 2024 Query Design for Crowdsourced Clustering: Effect of Cognitive Overload and Contextual Bias Yi Chen, Ramya Korlakai Vinayak
ICMLW 2023 Learning Populations of Preferences via Pairwise Comparison Queries Gokcan Tatli, Yi Chen, Ramya Korlakai Vinayak
NeurIPS 2023 Promises and Pitfalls of Threshold-Based Auto-Labeling Harit Vishwakarma, Heguang Lin, Frederic Sala, Ramya Korlakai Vinayak
NeurIPS 2022 One for All: Simultaneous Metric and Preference Learning over Multiple Users Gregory Canal, Blake Mason, Ramya Korlakai Vinayak, Robert Nowak
ICML 2020 Estimating the Number and Effect Sizes of Non-Null Hypotheses Jennifer Brennan, Ramya Korlakai Vinayak, Kevin Jamieson
ICML 2019 Maximum Likelihood Estimation for Learning Populations of Parameters Ramya Korlakai Vinayak, Weihao Kong, Gregory Valiant, Sham Kakade
NeurIPS 2016 Crowdsourced Clustering: Querying Edges vs Triangles Ramya Korlakai Vinayak, Babak Hassibi
NeurIPS 2014 Graph Clustering with Missing Data: Convex Algorithms and Analysis Ramya Korlakai Vinayak, Samet Oymak, Babak Hassibi