Vogt, Julia E

58 publications

ICLRW 2025 Beyond Glucose-Only Assessment: Advancing Nocturnal Hypoglycemia Prediction in Children with Type 1 Diabetes Marco Voegeli, Sonia Laguna, Heike Leutheuser, Marie-Anne Burckhardt, Julia E Vogt
ICLR 2025 Cross-Entropy Is All You Need to Invert the Data Generating Process Patrik Reizinger, Alice Bizeul, Attila Juhos, Julia E Vogt, Randall Balestriero, Wieland Brendel, David Klindt
ICML 2025 From Logits to Hierarchies: Hierarchical Clustering Made Simple Emanuele Palumbo, Moritz Vandenhirtz, Alain Ryser, Imant Daunhawer, Julia E Vogt
ICML 2025 From Pixels to Perception: Interpretable Predictions via Instance-Wise Grouped Feature Selection Moritz Vandenhirtz, Julia E Vogt
ICLRW 2025 Measuring Leakage in Concept-Based Methods: An Information Theoretic Approach Mikael Makonnen, Moritz Vandenhirtz, Sonia Laguna, Julia E Vogt
TMLR 2025 On the Challenges and Opportunities in Generative AI Laura Manduchi, Clara Meister, Kushagra Pandey, Robert Bamler, Ryan Cotterell, Sina Däubener, Sophie Fellenz, Asja Fischer, Thomas Gärtner, Matthias Kirchler, Marius Kloft, Yingzhen Li, Christoph Lippert, Gerard de Melo, Eric Nalisnick, Björn Ommer, Rajesh Ranganath, Maja Rudolph, Karen Ullrich, Guy Van den Broeck, Julia E Vogt, Yixin Wang, Florian Wenzel, Frank Wood, Stephan Mandt, Vincent Fortuin
TMLR 2025 On the Properties and Estimation of Pointwise Mutual Information Profiles Paweł Czyż, Frederic Grabowski, Julia E Vogt, Niko Beerenwinkel, Alexander Marx
MLHC 2025 PhenoRAG: Retrieval-Augmented Generation for Efficient Zero-Shot Phenotype Identification in Clinical Reports Marc Berndt, Andrea Agostini, Beatrice Stocker, Maria Padrutt, Silvio Daniel Brugger, D Sean Froese, Daphné Chopard, Julia E Vogt
ICLRW 2025 Predicting Pulmonary Hypertension in Newborns: A Multi-View VAE Approach Lucas Erlacher, Samuel Ruiperez-Campillo, Holger Michel, Sven Wellmann, Thomas M. Sutter, Ece Ozkan, Julia E Vogt
ICLRW 2025 Towards Scalable Newborn Screening: Automated General Movement Assessment in Uncontrolled Settings Daphné Chopard, Sonia Laguna, Kieran Chin-Cheong, Annika Dietz, Anna Badura, Sven Wellmann, Julia E Vogt
MLHC 2025 Towards Scalable Newborn Screening: Automated General Movement Assessment in Uncontrolled Settings Daphné Chopard, Sonia Laguna, Kieran Chin-Cheong, Annika Dietz, Anna Badura, Sven Wellmann, Julia E Vogt
ECML-PKDD 2025 TreeDiffusion: Hierarchical Generative Clustering for Conditional Diffusion Jorge da Silva Goncalves, Laura Manduchi, Moritz Vandenhirtz, Julia E. Vogt
TMLR 2025 Two Is Better than One: Aligned Representation Pairs for Anomaly Detection Alain Ryser, Thomas M. Sutter, Alexander Marx, Julia E Vogt
ICML 2025 scSSL-Bench: Benchmarking Self-Supervised Learning for Single-Cell Data Olga Ovcharenko, Florian Barkmann, Philip Toma, Imant Daunhawer, Julia E Vogt, Sebastian Schelter, Valentina Boeva
NeurIPSW 2024 Benchmarking Self-Supervised Learning for Single-Cell Data Philip Toma, Olga Ovcharenko, Imant Daunhawer, Julia E Vogt, Florian Barkmann, Valentina Boeva
NeurIPS 2024 Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable? Sonia Laguna, Ričards Marcinkevičs, Moritz Vandenhirtz, Julia E. Vogt
NeurIPSW 2024 DIETing: Self-Supervised Learning with Instance Discrimination Learns Identifiable Features Attila Juhos, Alice Bizeul, Patrik Reizinger, Randall Balestriero, David Klindt, Mark Ibrahim, Julia E Vogt, Wieland Brendel
NeurIPSW 2024 DIETing: Self-Supervised Learning with Instance Discrimination Learns Identifiable Features Attila Juhos, Alice Bizeul, Patrik Reizinger, David Klindt, Randall Balestriero, Mark Ibrahim, Julia E Vogt, Wieland Brendel
ICLR 2024 Deep Generative Clustering with Multimodal Diffusion Variational Autoencoders Emanuele Palumbo, Laura Manduchi, Sonia Laguna, Daphné Chopard, Julia E Vogt
NeurIPSW 2024 Exploiting Interpretable Capabilities with Concept-Enhanced Diffusion and Prototype Networks Alba Carballo-Castro, Sonia Laguna, Moritz Vandenhirtz, Julia E Vogt
NeurIPSW 2024 Exploiting Interpretable Capabilities with Concept-Enhanced Diffusion and Prototype Networks Alba Carballo-Castro, Sonia Laguna, Moritz Vandenhirtz, Julia E Vogt
NeurIPSW 2024 Exploiting Interpretable Capabilities with Concept-Enhanced Diffusion and Prototype Networks Alba Carballo-Castro, Sonia Laguna, Moritz Vandenhirtz, Julia E Vogt
NeurIPSW 2024 Learning Symmetric Contexts for Anomaly Detection Alain Ryser, Thomas M. Sutter, Alexander Marx, Julia E Vogt
NeurIPS 2024 Stochastic Concept Bottleneck Models Moritz Vandenhirtz, Sonia Laguna, Ričards Marcinkevičs, Julia E. Vogt
ICMLW 2024 Stochastic Concept Bottleneck Models Moritz Vandenhirtz, Sonia Laguna, Ričards Marcinkevičs, Julia E Vogt
ICMLW 2024 Stochastic Concept Bottleneck Models Moritz Vandenhirtz, Sonia Laguna, Ričards Marcinkevičs, Julia E Vogt
ICMLW 2024 Structured Generations: Using Hierarchical Clusters to Guide Diffusion Models Jorge da Silva Gonçalves, Laura Manduchi, Moritz Vandenhirtz, Julia E Vogt
NeurIPSW 2024 Two Is Better than One: Aligned Clusters Improve Anomaly Detection Alain Ryser, Thomas M. Sutter, Alexander Marx, Julia E Vogt
NeurIPS 2024 Unity by Diversity: Improved Representation Learning for Multimodal VAEs Thomas M. Sutter, Yang Meng, Andrea Agostini, Daphné Chopard, Norbert Fortin, Julia E. Vogt, Babak Shahbaba, Stephan Mandt
ICMLW 2024 scTree: Discovering Cellular Hierarchies in the Presence of Batch Effects in scRNA-Seq Data Moritz Vandenhirtz, Florian Barkmann, Laura Manduchi, Julia E Vogt, Valentina Boeva
ICMLW 2024 scTree: Discovering Cellular Hierarchies in the Presence of Batch Effects in scRNA-Seq Data Moritz Vandenhirtz, Florian Barkmann, Laura Manduchi, Julia E Vogt, Valentina Boeva
ICMLW 2023 (Un)reasonable Allure of Ante-Hoc Interpretability for High-Stakes Domains: Transparency Is Necessary but Insufficient for Comprehensibility Kacper Sokol, Julia E Vogt
ICMLW 2023 Deep Generative Clustering with Multimodal Variational Autoencoders Emanuele Palumbo, Sonia Laguna, Daphné Chopard, Julia E Vogt
ICMLW 2023 Deep Generative Clustering with Multimodal Variational Autoencoders Emanuele Palumbo, Sonia Laguna, Daphné Chopard, Julia E Vogt
ICMLW 2023 Differentiable Set Partitioning Thomas M. Sutter, Alain Ryser, Joram Liebeskind, Julia E Vogt
ICLR 2023 How Robust Is Unsupervised Representation Learning to Distribution Shift? Yuge Shi, Imant Daunhawer, Julia E Vogt, Philip Torr, Amartya Sanyal
ICLR 2023 Identifiability Results for Multimodal Contrastive Learning Imant Daunhawer, Alice Bizeul, Emanuele Palumbo, Alexander Marx, Julia E Vogt
ICLR 2023 Learning Group Importance Using the Differentiable Hypergeometric Distribution Thomas M. Sutter, Laura Manduchi, Alain Ryser, Julia E Vogt
ICLR 2023 MMVAE+: Enhancing the Generative Quality of Multimodal VAEs Without Compromises Emanuele Palumbo, Imant Daunhawer, Julia E Vogt
ICML 2023 On the Identifiability and Estimation of Causal Location-Scale Noise Models Alexander Immer, Christoph Schultheiss, Julia E Vogt, Bernhard Schölkopf, Peter Bühlmann, Alexander Marx
ICLRW 2023 Self-Supervised Learning to Predict Ejection Fraction Using Motion-Mode Images Yurong Hu, Thomas M. Sutter, Ece Ozkan, Julia E Vogt
ICMLW 2023 Tree Variational Autoencoders Laura Manduchi, Moritz Vandenhirtz, Alain Ryser, Julia E Vogt
ICMLW 2023 Tree Variational Autoencoders Laura Manduchi, Moritz Vandenhirtz, Alain Ryser, Julia E Vogt
ICMLW 2023 Uncovering Latent Structure Using Random Partition Models Thomas M. Sutter, Alain Ryser, Joram Liebeskind, Julia E Vogt
ICLR 2022 A Deep Variational Approach to Clustering Survival Data Laura Manduchi, Ričards Marcinkevičs, Michela C. Massi, Thomas Weikert, Alexander Sauter, Verena Gotta, Timothy Müller, Flavio Vasella, Marian C. Neidert, Marc Pfister, Bram Stieltjes, Julia E Vogt
MLHC 2022 Anomaly Detection in Echocardiograms with Dynamic Variational Trajectory Models Alain Ryser, Laura Manduchi, Fabian Laumer, Holger Michel, Sven Wellmann, Julia E. Vogt
ICLRW 2022 Continuous Relaxation for the Multivariate Noncentral Hypergeometric Distribution Thomas M. Sutter, Laura Manduchi, Alain Ryser, Julia E Vogt
MLHC 2022 Debiasing Deep Chest X-Ray Classifiers Using Intra- and Post-Processing Methods Ricards Marcinkevics, Ece Ozkan, Julia E. Vogt
ICMLW 2022 How Robust Are Pre-Trained Models to Distribution Shift? Yuge Shi, Imant Daunhawer, Julia E Vogt, Philip Torr, Amartya Sanyal
ICMLW 2022 How Robust Are Pre-Trained Models to Distribution Shift? Yuge Shi, Imant Daunhawer, Julia E Vogt, Philip Torr, Amartya Sanyal
ICLRW 2022 MMVAE+: Enhancing the Generative Quality of Multimodal VAEs Without Compromises Emanuele Palumbo, Imant Daunhawer, Julia E Vogt
ICLR 2022 On the Limitations of Multimodal VAEs Imant Daunhawer, Thomas M. Sutter, Kieran Chin-Cheong, Emanuele Palumbo, Julia E Vogt
ICLR 2021 Generalized Multimodal ELBO Thomas M. Sutter, Imant Daunhawer, Julia E Vogt
ICLR 2021 Interpretable Models for Granger Causality Using Self-Explaining Neural Networks Ričards Marcinkevičs, Julia E Vogt
NeurIPSW 2021 On the Limitations of Multimodal VAEs Imant Daunhawer, Thomas M. Sutter, Kieran Chin-Cheong, Emanuele Palumbo, Julia E Vogt
MLJ 2015 Probabilistic Clustering of Time-Evolving Distance Data Julia E. Vogt, Marius Kloft, Stefan Stark, Sudhir Raman, Sandhya Prabhakaran, Volker Roth, Gunnar Rätsch
ICML 2012 A Complete Analysis of the L_1, P Group-Lasso Julia E. Vogt, Volker Roth
ICML 2010 The Translation-Invariant Wishart-Dirichlet Process for Clustering Distance Data Julia E. Vogt, Sandhya Prabhakaran, Thomas J. Fuchs, Volker Roth