ML Anthology
Authors
Search
About
Von Kügelgen, Julius
34 publications
ICLR
2025
Interaction Asymmetry: A General Principle for Learning Composable Abstractions
Jack Brady
,
Julius von Kügelgen
,
Sebastien Lachapelle
,
Simon Buchholz
,
Thomas Kipf
,
Wieland Brendel
ICLRW
2025
Representation Learning for Distributional Perturbation Extrapolation
Julius von Kügelgen
,
Xinwei Shen
,
Jakob Ketterer
,
Nicolai Meinshausen
,
Jonas Peters
NeurIPS
2025
Transferring Causal Effects Using Proxies
Manuel Iglesias-Alonso
,
Felix Schur
,
Julius von Kügelgen
,
Jonas Peters
ICML
2024
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
,
Dingling Yao
,
Sebastien Lachapelle
,
Perouz Taslakian
,
Julius Von Kügelgen
,
Francesco Locatello
,
Sara Magliacane
TMLR
2024
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Klaus-Rudolf Kladny
,
Julius von Kügelgen
,
Bernhard Schölkopf
,
Michael Muehlebach
NeurIPSW
2024
Interaction Asymmetry: A General Principle for Learning Composable Abstractions
Jack Brady
,
Julius von Kügelgen
,
Sebastien Lachapelle
,
Simon Buchholz
,
Wieland Brendel
ICLR
2024
Multi-View Causal Representation Learning with Partial Observability
Dingling Yao
,
Danru Xu
,
Sebastien Lachapelle
,
Sara Magliacane
,
Perouz Taslakian
,
Georg Martius
,
Julius von Kügelgen
,
Francesco Locatello
NeurIPSW
2024
Towards Object-Centric Learning with General Purpose Architectures
Jack Brady
,
Julius von Kügelgen
,
Sebastien Lachapelle
,
Simon Buchholz
,
Thomas Kipf
,
Wieland Brendel
NeurIPSW
2023
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
,
Dingling Yao
,
Sebastien Lachapelle
,
Perouz Taslakian
,
Julius von Kügelgen
,
Francesco Locatello
,
Sara Magliacane
CLeaR
2023
Backtracking Counterfactuals
Julius Von Kügelgen
,
Abdirisak Mohamed
,
Sander Beckers
NeurIPS
2023
Causal Component Analysis
Liang Wendong
,
Armin Kekić
,
Julius von Kügelgen
,
Simon Buchholz
,
Michel Besserve
,
Luigi Gresele
,
Bernhard Schölkopf
ICLR
2023
DCI-ES: An Extended Disentanglement Framework with Connections to Identifiability
Cian Eastwood
,
Andrei Liviu Nicolicioiu
,
Julius Von Kügelgen
,
Armin Kekić
,
Frederik Träuble
,
Andrea Dittadi
,
Bernhard Schölkopf
NeurIPSW
2023
Independent Mechanism Analysis and the Manifold Hypothesis
Shubhangi Ghosh
,
Luigi Gresele
,
Julius von Kügelgen
,
Michel Besserve
,
Bernhard Schölkopf
NeurIPSW
2023
Multi-View Causal Representation Learning with Partial Observability
Dingling Yao
,
Danru Xu
,
Sebastien Lachapelle
,
Sara Magliacane
,
Perouz Taslakian
,
Georg Martius
,
Julius von Kügelgen
,
Francesco Locatello
NeurIPS
2023
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
,
Michel Besserve
,
Liang Wendong
,
Luigi Gresele
,
Armin Kekić
,
Elias Bareinboim
,
David M. Blei
,
Bernhard Schölkopf
ICML
2023
Provably Learning Object-Centric Representations
Jack Brady
,
Roland S. Zimmermann
,
Yash Sharma
,
Bernhard Schölkopf
,
Julius Von Kügelgen
,
Wieland Brendel
NeurIPSW
2023
Self-Supervised Disentanglement by Leveraging Structure in Data Augmentations
Cian Eastwood
,
Julius von Kügelgen
,
Linus Ericsson
,
Diane Bouchacourt
,
Pascal Vincent
,
Mark Ibrahim
,
Bernhard Schölkopf
NeurIPS
2023
Spuriosity Didn’t Kill the Classifier: Using Invariant Predictions to Harness Spurious Features
Cian Eastwood
,
Shashank Singh
,
Andrei L Nicolicioiu
,
Marin Vlastelica Pogančić
,
Julius von Kügelgen
,
Bernhard Schölkopf
CLeaR
2023
Unsupervised Object Learning via Common Fate
Matthias Tangemann
,
Steffen Schneider
,
Julius Von Kügelgen
,
Francesco Locatello
,
Peter Vincent Gehler
,
Thomas Brox
,
Matthias Kuemmerer
,
Matthias Bethge
,
Bernhard Schölkopf
NeurIPS
2022
Active Bayesian Causal Inference
Christian Toth
,
Lars Lorch
,
Christian Knoll
,
Andreas Krause
,
Franz Pernkopf
,
Robert Peharz
,
Julius von Kügelgen
NeurIPSW
2022
Active Bayesian Causal Inference
Christian Toth
,
Lars Lorch
,
Christian Knoll
,
Andreas Krause
,
Franz Pernkopf
,
Robert Peharz
,
Julius Von Kügelgen
NeurIPSW
2022
Active Bayesian Causal Inference
Christian Toth
,
Lars Lorch
,
Christian Knoll
,
Andreas Krause
,
Franz Pernkopf
,
Robert Peharz
,
Julius Von Kügelgen
NeurIPS
2022
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
,
Julius von Kügelgen
,
Bernhard Schölkopf
ICML
2022
Causal Inference Through the Structural Causal Marginal Problem
Luigi Gresele
,
Julius Von Kügelgen
,
Jonas Kübler
,
Elke Kirschbaum
,
Bernhard Schölkopf
,
Dominik Janzing
NeurIPS
2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
,
Luigi Gresele
,
Jack Brady
,
Julius von Kügelgen
,
Dominik Zietlow
,
Bernhard Schölkopf
,
Georg Martius
,
Wieland Brendel
,
Michel Besserve
NeurIPSW
2022
Evaluating Vaccine Allocation Strategies Using Simulation-Assisted Causal Modelling
Armin Kekić
,
Jonas Dehning
,
Luigi Gresele
,
Julius von Kügelgen
,
Viola Priesemann
,
Bernhard Schölkopf
AAAI
2022
On the Fairness of Causal Algorithmic Recourse
Julius von Kügelgen
,
Amir-Hossein Karimi
,
Umang Bhatt
,
Isabel Valera
,
Adrian Weller
,
Bernhard Schölkopf
NeurIPS
2022
Probable Domain Generalization via Quantile Risk Minimization
Cian Eastwood
,
Alexander Robey
,
Shashank Singh
,
Julius von Kügelgen
,
Hamed Hassani
,
George J. Pappas
,
Bernhard Schölkopf
ICLR
2022
Visual Representation Learning Does Not Generalize Strongly Within the Same Domain
Lukas Schott
,
Julius Von Kügelgen
,
Frederik Träuble
,
Peter Vincent Gehler
,
Chris Russell
,
Matthias Bethge
,
Bernhard Schölkopf
,
Francesco Locatello
,
Wieland Brendel
ICLR
2022
You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory Prediction
Osama Makansi
,
Julius Von Kügelgen
,
Francesco Locatello
,
Peter Vincent Gehler
,
Dominik Janzing
,
Thomas Brox
,
Bernhard Schölkopf
NeurIPS
2021
Backward-Compatible Prediction Updates: A Probabilistic Approach
Frederik Träuble
,
Julius von Kügelgen
,
Matthäus Kleindessner
,
Francesco Locatello
,
Bernhard Schölkopf
,
Peter V. Gehler
NeurIPS
2021
Independent Mechanism Analysis, a New Concept?
Luigi Gresele
,
Julius von Kügelgen
,
Vincent Stimper
,
Bernhard Schölkopf
,
Michel Besserve
NeurIPS
2021
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
Julius von Kügelgen
,
Yash Sharma
,
Luigi Gresele
,
Wieland Brendel
,
Bernhard Schölkopf
,
Michel Besserve
,
Francesco Locatello
NeurIPS
2020
Algorithmic Recourse Under Imperfect Causal Knowledge: A Probabilistic Approach
Amir-Hossein Karimi
,
Julius von Kügelgen
,
Bernhard Schölkopf
,
Isabel Valera