Von Kügelgen, Julius

34 publications

ICLR 2025 Interaction Asymmetry: A General Principle for Learning Composable Abstractions Jack Brady, Julius von Kügelgen, Sebastien Lachapelle, Simon Buchholz, Thomas Kipf, Wieland Brendel
ICLRW 2025 Representation Learning for Distributional Perturbation Extrapolation Julius von Kügelgen, Xinwei Shen, Jakob Ketterer, Nicolai Meinshausen, Jonas Peters
NeurIPS 2025 Transferring Causal Effects Using Proxies Manuel Iglesias-Alonso, Felix Schur, Julius von Kügelgen, Jonas Peters
ICML 2024 A Sparsity Principle for Partially Observable Causal Representation Learning Danru Xu, Dingling Yao, Sebastien Lachapelle, Perouz Taslakian, Julius Von Kügelgen, Francesco Locatello, Sara Magliacane
TMLR 2024 Deep Backtracking Counterfactuals for Causally Compliant Explanations Klaus-Rudolf Kladny, Julius von Kügelgen, Bernhard Schölkopf, Michael Muehlebach
NeurIPSW 2024 Interaction Asymmetry: A General Principle for Learning Composable Abstractions Jack Brady, Julius von Kügelgen, Sebastien Lachapelle, Simon Buchholz, Wieland Brendel
ICLR 2024 Multi-View Causal Representation Learning with Partial Observability Dingling Yao, Danru Xu, Sebastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius, Julius von Kügelgen, Francesco Locatello
NeurIPSW 2024 Towards Object-Centric Learning with General Purpose Architectures Jack Brady, Julius von Kügelgen, Sebastien Lachapelle, Simon Buchholz, Thomas Kipf, Wieland Brendel
NeurIPSW 2023 A Sparsity Principle for Partially Observable Causal Representation Learning Danru Xu, Dingling Yao, Sebastien Lachapelle, Perouz Taslakian, Julius von Kügelgen, Francesco Locatello, Sara Magliacane
CLeaR 2023 Backtracking Counterfactuals Julius Von Kügelgen, Abdirisak Mohamed, Sander Beckers
NeurIPS 2023 Causal Component Analysis Liang Wendong, Armin Kekić, Julius von Kügelgen, Simon Buchholz, Michel Besserve, Luigi Gresele, Bernhard Schölkopf
ICLR 2023 DCI-ES: An Extended Disentanglement Framework with Connections to Identifiability Cian Eastwood, Andrei Liviu Nicolicioiu, Julius Von Kügelgen, Armin Kekić, Frederik Träuble, Andrea Dittadi, Bernhard Schölkopf
NeurIPSW 2023 Independent Mechanism Analysis and the Manifold Hypothesis Shubhangi Ghosh, Luigi Gresele, Julius von Kügelgen, Michel Besserve, Bernhard Schölkopf
NeurIPSW 2023 Multi-View Causal Representation Learning with Partial Observability Dingling Yao, Danru Xu, Sebastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius, Julius von Kügelgen, Francesco Locatello
NeurIPS 2023 Nonparametric Identifiability of Causal Representations from Unknown Interventions Julius von Kügelgen, Michel Besserve, Liang Wendong, Luigi Gresele, Armin Kekić, Elias Bareinboim, David M. Blei, Bernhard Schölkopf
ICML 2023 Provably Learning Object-Centric Representations Jack Brady, Roland S. Zimmermann, Yash Sharma, Bernhard Schölkopf, Julius Von Kügelgen, Wieland Brendel
NeurIPSW 2023 Self-Supervised Disentanglement by Leveraging Structure in Data Augmentations Cian Eastwood, Julius von Kügelgen, Linus Ericsson, Diane Bouchacourt, Pascal Vincent, Mark Ibrahim, Bernhard Schölkopf
NeurIPS 2023 Spuriosity Didn’t Kill the Classifier: Using Invariant Predictions to Harness Spurious Features Cian Eastwood, Shashank Singh, Andrei L Nicolicioiu, Marin Vlastelica Pogančić, Julius von Kügelgen, Bernhard Schölkopf
CLeaR 2023 Unsupervised Object Learning via Common Fate Matthias Tangemann, Steffen Schneider, Julius Von Kügelgen, Francesco Locatello, Peter Vincent Gehler, Thomas Brox, Matthias Kuemmerer, Matthias Bethge, Bernhard Schölkopf
NeurIPS 2022 Active Bayesian Causal Inference Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf, Robert Peharz, Julius von Kügelgen
NeurIPSW 2022 Active Bayesian Causal Inference Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf, Robert Peharz, Julius Von Kügelgen
NeurIPSW 2022 Active Bayesian Causal Inference Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf, Robert Peharz, Julius Von Kügelgen
NeurIPS 2022 Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis Ronan Perry, Julius von Kügelgen, Bernhard Schölkopf
ICML 2022 Causal Inference Through the Structural Causal Marginal Problem Luigi Gresele, Julius Von Kügelgen, Jonas Kübler, Elke Kirschbaum, Bernhard Schölkopf, Dominik Janzing
NeurIPS 2022 Embrace the Gap: VAEs Perform Independent Mechanism Analysis Patrik Reizinger, Luigi Gresele, Jack Brady, Julius von Kügelgen, Dominik Zietlow, Bernhard Schölkopf, Georg Martius, Wieland Brendel, Michel Besserve
NeurIPSW 2022 Evaluating Vaccine Allocation Strategies Using Simulation-Assisted Causal Modelling Armin Kekić, Jonas Dehning, Luigi Gresele, Julius von Kügelgen, Viola Priesemann, Bernhard Schölkopf
AAAI 2022 On the Fairness of Causal Algorithmic Recourse Julius von Kügelgen, Amir-Hossein Karimi, Umang Bhatt, Isabel Valera, Adrian Weller, Bernhard Schölkopf
NeurIPS 2022 Probable Domain Generalization via Quantile Risk Minimization Cian Eastwood, Alexander Robey, Shashank Singh, Julius von Kügelgen, Hamed Hassani, George J. Pappas, Bernhard Schölkopf
ICLR 2022 Visual Representation Learning Does Not Generalize Strongly Within the Same Domain Lukas Schott, Julius Von Kügelgen, Frederik Träuble, Peter Vincent Gehler, Chris Russell, Matthias Bethge, Bernhard Schölkopf, Francesco Locatello, Wieland Brendel
ICLR 2022 You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory Prediction Osama Makansi, Julius Von Kügelgen, Francesco Locatello, Peter Vincent Gehler, Dominik Janzing, Thomas Brox, Bernhard Schölkopf
NeurIPS 2021 Backward-Compatible Prediction Updates: A Probabilistic Approach Frederik Träuble, Julius von Kügelgen, Matthäus Kleindessner, Francesco Locatello, Bernhard Schölkopf, Peter V. Gehler
NeurIPS 2021 Independent Mechanism Analysis, a New Concept? Luigi Gresele, Julius von Kügelgen, Vincent Stimper, Bernhard Schölkopf, Michel Besserve
NeurIPS 2021 Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel Besserve, Francesco Locatello
NeurIPS 2020 Algorithmic Recourse Under Imperfect Causal Knowledge: A Probabilistic Approach Amir-Hossein Karimi, Julius von Kügelgen, Bernhard Schölkopf, Isabel Valera