ML Anthology
Authors
Search
About
von Oswald, Johannes
19 publications
ICLR
2025
Learning Randomized Algorithms with Transformers
Johannes von Oswald
,
Seijin Kobayashi
,
Yassir Akram
,
Angelika Steger
ICLR
2025
Multi-Agent Cooperation Through Learning-Aware Policy Gradients
Alexander Meulemans
,
Seijin Kobayashi
,
Johannes von Oswald
,
Nino Scherrer
,
Eric Elmoznino
,
Blake Aaron Richards
,
Guillaume Lajoie
,
Blaise Aguera y Arcas
,
Joao Sacramento
TMLR
2025
Understanding In-Context Learning of Linear Models in Transformers Through an Adversarial Lens
Usman Anwar
,
Johannes von Oswald
,
Louis Kirsch
,
David Krueger
,
Spencer Frei
ICLR
2024
Discovering Modular Solutions That Generalize Compositionally
Simon Schug
,
Seijin Kobayashi
,
Yassir Akram
,
Maciej Wolczyk
,
Alexandra Maria Proca
,
Johannes von Oswald
,
Razvan Pascanu
,
Joao Sacramento
,
Angelika Steger
ICMLW
2024
Efficient Linear System Solver with Transformers
Max Vladymyrov
,
Johannes von Oswald
,
Nolan Andrew Miller
,
Mark Sandler
NeurIPS
2024
Linear Transformers Are Versatile In-Context Learners
Max Vladymyrov
,
Johannes von Oswald
,
Mark Sandler
,
Rong Ge
ICMLW
2024
Linear Transformers Are Versatile In-Context Learners
Max Vladymyrov
,
Johannes von Oswald
,
Mark Sandler
,
Rong Ge
NeurIPS
2024
Weight Decay Induces Low-Rank Attention Layers
Seijin Kobayashi
,
Yassir Akram
,
Johannes von Oswald
ICML
2023
Transformers Learn In-Context by Gradient Descent
Johannes Von Oswald
,
Eyvind Niklasson
,
Ettore Randazzo
,
Joao Sacramento
,
Alexander Mordvintsev
,
Andrey Zhmoginov
,
Max Vladymyrov
NeurIPS
2022
A Contrastive Rule for Meta-Learning
Nicolas Zucchet
,
Simon Schug
,
Johannes von Oswald
,
Dominic Zhao
,
João Sacramento
NeurIPS
2022
Disentangling the Predictive Variance of Deep Ensembles Through the Neural Tangent Kernel
Seijin Kobayashi
,
Pau Vilimelis Aceituno
,
Johannes von Oswald
NeurIPSW
2022
Random Initialisations Performing Above Chance and How to Find Them
Frederik Benzing
,
Simon Schug
,
Robert Meier
,
Johannes von Oswald
,
Yassir Akram
,
Nicolas Zucchet
,
Laurence Aitchison
,
Angelika Steger
NeurIPS
2022
The Least-Control Principle for Local Learning at Equilibrium
Alexander Meulemans
,
Nicolas Zucchet
,
Seijin Kobayashi
,
Johannes von Oswald
,
João Sacramento
ICLR
2021
Continual Learning in Recurrent Neural Networks
Benjamin Ehret
,
Christian Henning
,
Maria Cervera
,
Alexander Meulemans
,
Johannes von Oswald
,
Benjamin F Grewe
ICLRW
2021
Learning Where to Learn
Dominic Zhao
,
Nicolas Zucchet
,
Joao Sacramento
,
Johannes von Oswald
NeurIPS
2021
Learning Where to Learn: Gradient Sparsity in Meta and Continual Learning
Johannes von Oswald
,
Dominic Zhao
,
Seijin Kobayashi
,
Simon Schug
,
Massimo Caccia
,
Nicolas Zucchet
,
João Sacramento
ICLR
2021
Neural Networks with Late-Phase Weights
Johannes von Oswald
,
Seijin Kobayashi
,
Joao Sacramento
,
Alexander Meulemans
,
Christian Henning
,
Benjamin F Grewe
NeurIPS
2021
Posterior Meta-Replay for Continual Learning
Christian Henning
,
Maria Cervera
,
Francesco D'Angelo
,
Johannes von Oswald
,
Regina Traber
,
Benjamin Ehret
,
Seijin Kobayashi
,
Benjamin F. Grewe
,
João Sacramento
ICLR
2020
Continual Learning with Hypernetworks
Johannes von Oswald
,
Christian Henning
,
João Sacramento
,
Benjamin F. Grewe