Wang, Bao

20 publications

ICLR 2025 A Theoretically-Principled Sparse, Connected, and Rigid Graph Representation of Molecules Shih-Hsin Wang, Yuhao Huang, Justin M. Baker, Yuan-En Sun, Qi Tang, Bao Wang
ICML 2025 Improving Flow Matching by Aligning Flow Divergence Yuhao Huang, Taos Transue, Shih-Hsin Wang, William M Feldman, Hong Zhang, Bao Wang
CVPR 2025 Investigating the Role of Weight Decay in Enhancing Nonconvex SGD Tao Sun, Yuhao Huang, Li Shen, Kele Xu, Bao Wang
NeurIPS 2025 Towards Multiscale Graph-Based Protein Learning with Geometric Secondary Structural Motifs Shih-Hsin Wang, Yuhao Huang, Taos Transue, Justin M. Baker, Jonathan Forstater, Thomas Strohmer, Bao Wang
ICML 2024 An Explicit Frame Construction for Normalizing 3D Point Clouds Justin Baker, Shih-Hsin Wang, Tommaso De Fernex, Bao Wang
ICLR 2024 Efficient Score Matching with Deep Equilibrium Layers Yuhao Huang, Qingsong Wang, Akwum Onwunta, Bao Wang
AISTATS 2024 Monotone Operator Theory-Inspired Message Passing for Learning Long-Range Interaction on Graphs Justin M. Baker, Qingsong Wang, Martin Berzins, Thomas Strohmer, Bao Wang
ICLR 2024 Rethinking the Benefits of Steerable Features in 3D Equivariant Graph Neural Networks Shih-Hsin Wang, Yung-Chang Hsu, Justin Baker, Andrea L. Bertozzi, Jack Xin, Bao Wang
ICML 2023 Implicit Graph Neural Networks: A Monotone Operator Viewpoint Justin Baker, Qingsong Wang, Cory D Hauck, Bao Wang
ICML 2023 Momentum Ensures Convergence of SIGNSGD Under Weaker Assumptions Tao Sun, Qingsong Wang, Dongsheng Li, Bao Wang
TMLR 2023 Pairwise Learning with Adaptive Online Gradient Descent Tao Sun, Qingsong Wang, Yunwen Lei, Dongsheng Li, Bao Wang
ICML 2022 Adaptive Random Walk Gradient Descent for Decentralized Optimization Tao Sun, Dongsheng Li, Bao Wang
NeurIPS 2022 Finite-Time Analysis of Adaptive Temporal Difference Learning with Deep Neural Networks Tao Sun, Dongsheng Li, Bao Wang
ICLR 2022 GRAND++: Graph Neural Diffusion with a Source Term Matthew Thorpe, Tan Minh Nguyen, Hedi Xia, Thomas Strohmer, Andrea Bertozzi, Stanley Osher, Bao Wang
NeurIPS 2021 FMMformer: Efficient and Flexible Transformer via Decomposed Near-Field and Far-Field Attention Tan Nguyen, Vai Suliafu, Stanley Osher, Long Chen, Bao Wang
NeurIPS 2021 Heavy Ball Neural Ordinary Differential Equations Hedi Xia, Vai Suliafu, Hangjie Ji, Tan Nguyen, Andrea Bertozzi, Stanley Osher, Bao Wang
AAAI 2021 Stability and Generalization of Decentralized Stochastic Gradient Descent Tao Sun, Dongsheng Li, Bao Wang
NeurIPS 2020 MomentumRNN: Integrating Momentum into Recurrent Neural Networks Tan Nguyen, Richard Baraniuk, Andrea Bertozzi, Stanley Osher, Bao Wang
NeurIPS 2019 ResNets Ensemble via the Feynman-Kac Formalism to Improve Natural and Robust Accuracies Bao Wang, Zuoqiang Shi, Stanley Osher
NeurIPS 2018 Deep Neural Nets with Interpolating Function as Output Activation Bao Wang, Xiyang Luo, Zhen Li, Wei Zhu, Zuoqiang Shi, Stanley Osher