Wang, Jindong

54 publications

ICLR 2025 CycleResearcher: Improving Automated Research via Automated Review Yixuan Weng, Minjun Zhu, Guangsheng Bao, Hongbo Zhang, Jindong Wang, Yue Zhang, Linyi Yang
NeurIPS 2025 From Pretraining to Pathology: How Noise Leads to Catastrophic Inheritance in Medical Models Hao Sun, Zhongyi Han, Hao Chen, Jindong Wang, Xin Gao, Yilong Yin
ICLR 2025 Is Your Model Really a Good Math Reasoner? Evaluating Mathematical Reasoning with Checklist Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu, Jindong Wang, Derek F. Wong, Xiaowei Huang, Qiufeng Wang, Kaizhu Huang
ICML 2025 MELON: Provable Defense Against Indirect Prompt Injection Attacks in AI Agents Kaijie Zhu, Xianjun Yang, Jindong Wang, Wenbo Guo, William Yang Wang
ICML 2025 Masked Autoencoders Are Effective Tokenizers for Diffusion Models Hao Chen, Yujin Han, Fangyi Chen, Xiang Li, Yidong Wang, Jindong Wang, Ze Wang, Zicheng Liu, Difan Zou, Bhiksha Raj
NeurIPS 2025 On Fairness of Unified Multimodal Large Language Model for Image Generation Ming Liu, Hao Chen, Jindong Wang, Liwen Wang, Bhiksha Raj, Wensheng Zhang
NeurIPS 2025 Personalized Safety in LLMs: A Benchmark and a Planning-Based Agent Approach Yuchen Wu, Edward Sun, Kaijie Zhu, Jianxun Lian, Jose Hernandez-Orallo, Aylin Caliskan, Jindong Wang
ICLR 2025 Realistic Evaluation of Deep Partial-Label Learning Algorithms Wei Wang, Dong-Dong Wu, Jindong Wang, Gang Niu, Min-Ling Zhang, Masashi Sugiyama
ICML 2025 Reasoning Through Execution: Unifying Process and Outcome Rewards for Code Generation Zhuohao Yu, Weizheng Gu, Yidong Wang, Xingru Jiang, Zhengran Zeng, Jindong Wang, Wei Ye, Shikun Zhang
CVPR 2025 SoftVQ-VAE: Efficient 1-Dimensional Continuous Tokenizer Hao Chen, Ze Wang, Xiang Li, Ximeng Sun, Fangyi Chen, Jiang Liu, Jindong Wang, Bhiksha Raj, Zicheng Liu, Emad Barsoum
ICLR 2025 StringLLM: Understanding the String Processing Capability of Large Language Models Xilong Wang, Hao Fu, Jindong Wang, Neil Zhenqiang Gong
ICML 2025 Topology-Aware Neural Flux Prediction Guided by Physics Haoyang Jiang, Jindong Wang, Xingquan Zhu, Yi He
ICLRW 2025 Tracing Scientific Evolution: A 30-Year Cross-Disciplinary Analysis Yiqiao Jin, Yijia Xiao, Yiyang Wang, Jindong Wang
ICML 2024 A General Framework for Learning from Weak Supervision Hao Chen, Jindong Wang, Lei Feng, Xiang Li, Yidong Wang, Xing Xie, Masashi Sugiyama, Rita Singh, Bhiksha Raj
ICML 2024 CompeteAI: Understanding the Competition Dynamics of Large Language Model-Based Agents Qinlin Zhao, Jindong Wang, Yixuan Zhang, Yiqiao Jin, Kaijie Zhu, Hao Chen, Xing Xie
ICMLW 2024 CompeteAI: Understanding the Competition Dynamics of Large Language Model-Based Agents Qinlin Zhao, Jindong Wang, Yixuan Zhang, Yiqiao Jin, Kaijie Zhu, Hao Chen, Xing Xie
CVPRW 2024 Conv-Adapter: Exploring Parameter Efficient Transfer Learning for ConvNets Hao Chen, Ran Tao, Han Zhang, Yidong Wang, Xiang Li, Wei Ye, Jindong Wang, Guosheng Hu, Marios Savvides
NeurIPS 2024 CultureLLM: Incorporating Cultural Differences into Large Language Models Cheng Li, Mengzhuo Chen, Jindong Wang, Sunayana Sitaram, Xing Xie
NeurIPS 2024 CulturePark: Boosting Cross-Cultural Understanding in Large Language Models Cheng Li, Damien Teney, Linyi Yang, Qingsong Wen, Xing Xie, Jindong Wang
NeurIPS 2024 Diff-eRank: A Novel Rank-Based Metric for Evaluating Large Language Models Lai Wei, Zhiquan Tan, Chenghai Li, Jindong Wang, Weiran Huang
ICLR 2024 DyVal: Dynamic Evaluation of Large Language Models for Reasoning Tasks Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, Xing Xie
ICML 2024 Dynamic Evaluation of Large Language Models by Meta Probing Agents Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, Xing Xie
NeurIPS 2024 ERBench: An Entity-Relationship Based Automatically Verifiable Hallucination Benchmark for Large Language Models Jio Oh, Soyeon Kim, Junseok Seo, Jindong Wang, Ruochen Xu, Xing Xie, Steven Euijong Whang
CPAL 2024 FIXED: Frustratingly Easy Domain Generalization with Mixup Wang Lu, Jindong Wang, Han Yu, Lei Huang, Xiang Zhang, Yiqiang Chen, Xing Xie
ICLRW 2024 How Well Does GPT-4V(ision) Adapt to Distribution Shifts? a Preliminary Investigation Zhongyi Han, Guanglin Zhou, Rundong He, Jindong Wang, Tailin Wu, Yilong Yin, Salman Khan, Lina Yao, Tongliang Liu, Kun Zhang
NeurIPS 2024 Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations Hao Chen, Ankit Shah, Jindong Wang, Ran Tao, Yidong Wang, Xiang Li, Xing Xie, Masashi Sugiyama, Rita Singh, Bhiksha Raj
IJCAI 2024 NegativePrompt: Leveraging Psychology for Large Language Models Enhancement via Negative Emotional Stimuli Xu Wang, Cheng Li, Yi Chang, Jindong Wang, Yuan Wu
DMLR 2024 On Catastrophic Inheritance of Large Foundation Models Hao Chen, Bhiksha Raj, Xing Xie, Jindong Wang
ICML 2024 Open-Vocabulary Calibration for Fine-Tuned CLIP Shuoyuan Wang, Jindong Wang, Guoqing Wang, Bob Zhang, Kaiyang Zhou, Hongxin Wei
ICLR 2024 PandaLM: An Automatic Evaluation Benchmark for LLM Instruction Tuning Optimization Yidong Wang, Zhuohao Yu, Wenjin Yao, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang, Rui Xie, Jindong Wang, Xing Xie, Wei Ye, Shikun Zhang, Yue Zhang
ICML 2024 Position: TrustLLM: Trustworthiness in Large Language Models Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Hanchi Sun, Zhengliang Liu, Yixin Liu, Yijue Wang, Zhikun Zhang, Bertie Vidgen, Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric P. Xing, Furong Huang, Hao Liu, Heng Ji, Hongyi Wang, Huan Zhang, Huaxiu Yao, Manolis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei, Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, Jindong Wang, Joaquin Vanschoren, John Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Lifang He, Lifu Huang, Michael Backes, Neil Zhenqiang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan Gu, Ran Xu, Rex Ying, Shuiwang Ji, Suman Jana, Tianlong Chen, Tianming Liu, Tianyi Zhou, William Yang Wang, Xiang Li, Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yanfang Ye, Yinzhi Cao, Yong Chen, Yue Zhao
ICML 2024 Position: What Can Large Language Models Tell Us About Time Series Analysis Ming Jin, Yifan Zhang, Wei Chen, Kexin Zhang, Yuxuan Liang, Bin Yang, Jindong Wang, Shirui Pan, Qingsong Wen
MLOSS 2024 PromptBench: A Unified Library for Evaluation of Large Language Models Kaijie Zhu, Qinlin Zhao, Hao Chen, Jindong Wang, Xing Xie
ICML 2024 Selective Mixup Helps with Distribution Shifts, but Not (Only) Because of Mixup Damien Teney, Jindong Wang, Ehsan Abbasnejad
NeurIPS 2024 Slight Corruption in Pre-Training Data Makes Better Diffusion Models Hao Chen, Yujin Han, Diganta Misra, Xiang Li, Kai Hu, Difan Zou, Masashi Sugiyama, Jindong Wang, Bhiksha Raj
ECCV 2024 SpecFormer: Guarding Vision Transformer Robustness via Maximum Singular Value Penalization Xixu Hu, Runkai Zheng, Jindong Wang, Cheuk Hang Leung, Qi Wu, Xing Xie
ICLR 2024 Supervised Knowledge Makes Large Language Models Better In-Context Learners Linyi Yang, Shuibai Zhang, Zhuohao Yu, Guangsheng Bao, Yidong Wang, Jindong Wang, Ruochen Xu, Wei Ye, Xing Xie, Weizhu Chen, Yue Zhang
ICML 2024 The Good, the Bad, and Why: Unveiling Emotions in Generative AI Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu, Xinyi Wang, Wenxin Hou, Jianxun Lian, Fang Luo, Qiang Yang, Xing Xie
ICLR 2024 Understanding and Mitigating the Label Noise in Pre-Training on Downstream Tasks Hao Chen, Jindong Wang, Ankit Shah, Ran Tao, Hongxin Wei, Xing Xie, Masashi Sugiyama, Bhiksha Raj
NeurIPSW 2024 ZOOPFL: Exploring Black-Box Foundation Models for Personalized Federated Learning Wang Lu, Hao Yu, Jindong Wang, Damien Teney, Haohan Wang, Yao Zhu, Yiqiang Chen, Qiang Yang, Xing Xie, Xiangyang Ji
NeurIPS 2023 Distilling Out-of-Distribution Robustness from Vision-Language Foundation Models Andy Zhou, Jindong Wang, Yu-Xiong Wang, Haohan Wang
ICLRW 2023 Fedclip: Fast Generalization and Personalization for CLIP in Federated Learning Wang Lu, Xixu Hu, Jindong Wang, Xing Xie
ICLR 2023 FreeMatch: Self-Adaptive Thresholding for Semi-Supervised Learning Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu, Jindong Wang, Marios Savvides, Takahiro Shinozaki, Bhiksha Raj, Bernt Schiele, Xing Xie
ICCV 2023 Improving Generalization of Adversarial Training via Robust Critical Fine-Tuning Kaijie Zhu, Xixu Hu, Jindong Wang, Xing Xie, Ge Yang
ICLRW 2023 On the Robustness of ChatGPT: An Adversarial and Out-of-Distribution Perspective Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen, Runkai Zheng, Yidong Wang, Linyi Yang, Wei Ye, Haojun Huang, Xiubo Geng, Binxing Jiao, Yue Zhang, Xing Xie
ICLR 2023 Out-of-Distribution Representation Learning for Time Series Classification Wang Lu, Jindong Wang, Xinwei Sun, Yiqiang Chen, Xing Xie
ICLR 2023 SoftMatch: Addressing the Quantity-Quality Tradeoff in Semi-Supervised Learning Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing Xie, Bhiksha Raj, Marios Savvides
TMLR 2022 Domain-Invariant Feature Exploration for Domain Generalization Wang Lu, Jindong Wang, Haoliang Li, Yiqiang Chen, Xing Xie
ACML 2022 Margin Calibration for Long-Tailed Visual Recognition Yidong Wang, Bowen Zhang, Wenxin Hou, Zhen Wu, Jindong Wang, Takahiro Shinozaki
NeurIPS 2022 USB: A Unified Semi-Supervised Learning Benchmark for Classification Yidong Wang, Hao Chen, Yue Fan, Wang Sun, Ran Tao, Wenxin Hou, Renjie Wang, Linyi Yang, Zhi Zhou, Lan-Zhe Guo, Heli Qi, Zhen Wu, Yu-Feng Li, Satoshi Nakamura, Wei Ye, Marios Savvides, Bhiksha Raj, Takahiro Shinozaki, Bernt Schiele, Jindong Wang, Xing Xie, Yue Zhang
NeurIPS 2021 FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, Takahiro Shinozaki
IJCAI 2021 Generalizing to Unseen Domains: A Survey on Domain Generalization Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin
NeurIPS 2021 Learning Causal Semantic Representation for Out-of-Distribution Prediction Chang Liu, Xinwei Sun, Jindong Wang, Haoyue Tang, Tao Li, Tao Qin, Wei Chen, Tie-Yan Liu
IJCAI 2020 Joint Partial Optimal Transport for Open Set Domain Adaptation Renjun Xu, Pelen Liu, Yin Zhang, Fang Cai, Jindong Wang, Shuoying Liang, Heting Ying, Jianwei Yin