ML Anthology
Authors
Search
About
Wang, Jun-Kun
16 publications
ICML
2025
Online Detection of LLM-Generated Texts via Sequential Hypothesis Testing by Betting
Can Chen
,
Jun-Kun Wang
ICLR
2023
Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time
Jun-Kun Wang
,
Andre Wibisono
ICLR
2023
Continuized Acceleration for Quasar Convex Functions in Non-Convex Optimization
Jun-Kun Wang
,
Andre Wibisono
ICLR
2023
Towards Understanding GD with Hard and Conjugate Pseudo-Labels for Test-Time Adaptation
Jun-Kun Wang
,
Andre Wibisono
ICML
2022
Provable Acceleration of Heavy Ball Beyond Quadratics for a Class of Polyak-Lojasiewicz Functions When the Non-Convexity Is Averaged-Out
Jun-Kun Wang
,
Chi-Heng Lin
,
Andre Wibisono
,
Bin Hu
ICML
2021
A Modular Analysis of Provable Acceleration via Polyakâs Momentum: Training a Wide ReLU Network and a Deep Linear Network
Jun-Kun Wang
,
Chi-Heng Lin
,
Jacob D Abernethy
ACML
2021
An Optimistic Acceleration of AMSGrad for Nonconvex Optimization
Jun-Kun Wang
,
Xiaoyun Li
,
Belhal Karimi
,
Ping Li
ACML
2021
Understanding How Over-Parametrization Leads to Acceleration: A Case of Learning a Single Teacher Neuron
Jun-Kun Wang
,
Jacob Abernethy
ICLR
2020
Escaping Saddle Points Faster with Stochastic Momentum
Jun-Kun Wang
,
Chi-Heng Lin
,
Jacob Abernethy
ICLR
2020
Optimistic Adaptive Acceleration for Optimization
Jun-Kun Wang
,
Xiaoyun Li
,
Ping Li
ALT
2019
Online Linear Optimization with Sparsity Constraints
Jun-Kun Wang
,
Chi-Jen Lu
,
Shou-De Lin
AAAI
2019
Revisiting Projection-Free Optimization for Strongly Convex Constraint Sets
Jarrid Rector-Brooks
,
Jun-Kun Wang
,
Barzan Mozafari
NeurIPS
2018
Acceleration Through Optimistic No-Regret Dynamics
Jun-Kun Wang
,
Jacob D. Abernethy
COLT
2018
Faster Rates for Convex-Concave Games
Jacob D. Abernethy
,
Kevin A. Lai
,
Kfir Y. Levy
,
Jun-Kun Wang
NeurIPS
2017
On Frank-Wolfe and Equilibrium Computation
Jacob D. Abernethy
,
Jun-Kun Wang
ICML
2014
Robust Inverse Covariance Estimation Under Noisy Measurements
Jun-Kun Wang
,
Shou-de Lin