ML Anthology
Authors
Search
About
Wang, Shaojun
22 publications
ICML
2024
DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow for High Fidelity Waveform Generation
Chenfeng Miao
,
Qingying Zhu
,
Minchuan Chen
,
Wei Hu
,
Zijian Li
,
Shaojun Wang
,
Jing Xiao
AISTATS
2021
Understanding Gradient Clipping in Incremental Gradient Methods
Jiang Qian
,
Yuren Wu
,
Bojin Zhuang
,
Shaojun Wang
,
Jing Xiao
ICML
2021
EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture
Chenfeng Miao
,
Liang Shuang
,
Zhengchen Liu
,
Chen Minchuan
,
Jun Ma
,
Shaojun Wang
,
Jing Xiao
AAAI
2020
An Iterative Polishing Framework Based on Quality Aware Masked Language Model for Chinese Poetry Generation
Liming Deng
,
Jie Wang
,
Hang-Ming Liang
,
Hui Chen
,
Zhiqiang Xie
,
Bojin Zhuang
,
Shaojun Wang
,
Jing Xiao
IJCAI
2020
Generating Reasonable Legal Text Through the Combination of Language Modeling and Question Answering
Weijing Huang
,
Xianfeng Liao
,
Zhiqiang Xie
,
Jiang Qian
,
Bojin Zhuang
,
Shaojun Wang
,
Jing Xiao
AISTATS
2019
Adversarial Discrete Sequence Generation Without Explicit NeuralNetworks as Discriminators
Zhongliang Li
,
Tian Xia
,
Xingyu Lou
,
Kaihe Xu
,
Shaojun Wang
,
Jing Xiao
AAAI
2018
Slim Embedding Layers for Recurrent Neural Language Models
Zhongliang Li
,
Raymond Kulhanek
,
Shaojun Wang
,
Yunxin Zhao
,
Shuang Wu
IJCAI
2015
A Direct Boosting Approach for Semi-Supervised Classification
Shaodan Zhai
,
Tian Xia
,
Zhongliang Li
,
Shaojun Wang
NeurIPS
2013
Direct 0-1 Loss Minimization and Margin Maximization with Boosting
Shaodan Zhai
,
Tian Xia
,
Ming Tan
,
Shaojun Wang
NeurIPS
2009
A Rate Distortion Approach for Semi-Supervised Conditional Random Fields
Yang Wang
,
Gholamreza Haffari
,
Shaojun Wang
,
Greg Mori
ICML
2008
Boosting with Incomplete Information
Gholamreza Haffari
,
Yang Wang
,
Shaojun Wang
,
Greg Mori
,
Feng Jiao
AAAI
2008
Constrained Classification on Structured Data
Chi-Hoon Lee
,
Matthew R. G. Brown
,
Russell Greiner
,
Shaojun Wang
,
Albert Murtha
NeurIPS
2006
Implicit Online Learning with Kernels
Li Cheng
,
Dale Schuurmans
,
Shaojun Wang
,
Terry Caelli
,
S.v.n. Vishwanathan
NeurIPS
2006
Learning to Model Spatial Dependency: Semi-Supervised Discriminative Random Fields
Chi-hoon Lee
,
Shaojun Wang
,
Feng Jiao
,
Dale Schuurmans
,
Russell Greiner
ICML
2006
Using Query-Specific Variance Estimates to Combine Bayesian Classifiers
Chi-Hoon Lee
,
Russell Greiner
,
Shaojun Wang
MLJ
2005
Combining Statistical Language Models via the Latent Maximum Entropy Principle
Shaojun Wang
,
Dale Schuurmans
,
Fuchun Peng
,
Yunxin Zhao
ICML
2005
Exploiting Syntactic, Semantic and Lexical Regularities in Language Modeling via Directed Markov Random Fields
Shaojun Wang
,
Shaomin Wang
,
Russell Greiner
,
Dale Schuurmans
,
Li Cheng
ICML
2005
Variational Bayesian Image Modelling
Li Cheng
,
Feng Jiao
,
Dale Schuurmans
,
Shaojun Wang
UAI
2003
Boltzmann Machine Learning with the Latent Maximum Entropy Principle
Shaojun Wang
,
Dale Schuurmans
,
Fuchun Peng
,
Yunxin Zhao
AISTATS
2003
Latent Maximum Entropy Approach for Semantic $n$-Gram Language Modeling
Shaojun Wang
,
Dale Schuurmans
,
Fuchun Peng
ALT
2003
Learning Continuous Latent Variable Models with Bregman Divergences
Shaojun Wang
,
Dale Schuurmans
ICML
2003
Learning Mixture Models with the Latent Maximum Entropy Principle
Shaojun Wang
,
Dale Schuurmans
,
Fuchun Peng
,
Yunxin Zhao