Wang, Yixin

58 publications

AISTATS 2025 Accuracy on the Wrong Line: On the Pitfalls of Noisy Data for Out-of-Distribution Generalisation Amartya Sanyal, Yaxi Hu, Yaodong Yu, Yian Ma, Yixin Wang, Bernhard Schölkopf
AAAI 2025 Audio-Visual Adaptive Fusion Network for Question Answering Based on Contrastive Learning Xujian Zhao, Yixin Wang, Peiquan Jin
ICLRW 2025 Bayesian Invariance Modeling of Multi-Environment Data Luhuan Wu, Mingzhang Yin, Yixin Wang, John Patrick Cunningham, David Blei
ICML 2025 Counterfactual Voting Adjustment for Quality Assessment and Fairer Voting in Online Platforms with Helpfulness Evaluation Chang Liu, Yixin Wang, Moontae Lee
JMLR 2025 Deep Generative Models: Complexity, Dimensionality, and Approximation Kevin Wang, Hongqian Niu, Yixin Wang, Didong Li
ICLR 2025 Doubly Robust Identification of Treatment Effects from Multiple Environments Piersilvio De Bartolomeis, Julia Kostin, Javier Abad, Yixin Wang, Fanny Yang
ICML 2025 Identifying Neural Dynamics Using Interventional State Space Models Amin Nejatbakhsh, Yixin Wang
ICLRW 2025 Last Layer Empirical Bayes Valentin Villecroze, Yixin Wang, Gabriel Loaiza-Ganem
ICLR 2025 Let Me Grok for You: Accelerating Grokking via Embedding Transfer from a Weaker Model Zhiwei Xu, Zhiyu Ni, Yixin Wang, Wei Hu
TMLR 2025 On the Challenges and Opportunities in Generative AI Laura Manduchi, Clara Meister, Kushagra Pandey, Robert Bamler, Ryan Cotterell, Sina Däubener, Sophie Fellenz, Asja Fischer, Thomas Gärtner, Matthias Kirchler, Marius Kloft, Yingzhen Li, Christoph Lippert, Gerard de Melo, Eric Nalisnick, Björn Ommer, Rajesh Ranganath, Maja Rudolph, Karen Ullrich, Guy Van den Broeck, Julia E Vogt, Yixin Wang, Florian Wenzel, Frank Wood, Stephan Mandt, Vincent Fortuin
AISTATS 2025 Posterior Mean Matching: Generative Modeling Through Online Bayesian Inference Sebastian Salazar, Michal Kucer, Yixin Wang, Emily Casleton, David Blei
AAAI 2025 Representation Learning: A Causal Perspective Yixin Wang
NeurIPS 2025 Tabula: A Tabular Self-Supervised Foundation Model for Single-Cell Transcriptomics Jiayuan Ding, Jianhui Lin, Shiyu Jiang, Yixin Wang, Ziyang Miao, Zhaoyu Fang, Jiliang Tang, Min Li, Xiaojie Qiu
CLeaR 2024 A Causality-Inspired Plus-Minus Model for Player Evaluation in Team Sports Caterina De Bacco, Yixin Wang, David Blei
ICMLW 2024 Accuracy on the Wrong Line: On the Pitfalls of Noisy Data for OOD Generalisation Amartya Sanyal, Yaxi Hu, Yaodong Yu, Yian Ma, Yixin Wang, Bernhard Schölkopf
JMLR 2024 Desiderata for Representation Learning: A Causal Perspective Yixin Wang, Michael I. Jordan
NeurIPS 2024 From Unstructured Data to In-Context Learning: Exploring What Tasks Can Be Learned and When Kevin Christian Wibisono, Yixin Wang
ICMLW 2024 In-Context Learning from Training on Unstructured Data: The Role of Co-Occurrence, Positional Information, and Training Data Structure Kevin Christian Wibisono, Yixin Wang
ICMLW 2024 In-Context Learning from Training on Unstructured Data: The Role of Co-Occurrence, Positional Information, and Training Data Structure Kevin Christian Wibisono, Yixin Wang
JMLR 2024 Instrumental Variable Value Iteration for Causal Offline Reinforcement Learning Luofeng Liao, Zuyue Fu, Zhuoran Yang, Yixin Wang, Dingli Ma, Mladen Kolar, Zhaoran Wang
NeurIPSW 2024 Leveraging LLM-Generated Structural Prior for Causal Inference with Concurrent Causes Xingjian Zhang, Shixuan Liu, Yixin Wang, Qiaozhu Mei
AISTATS 2024 Multi-Domain Causal Representation Learning via Weak Distributional Invariances Kartik Ahuja, Amin Mansouri, Yixin Wang
AISTATS 2024 Offline Policy Evaluation and Optimization Under Confounding Chinmaya Kausik, Yangyi Lu, Kevin Tan, Maggie Makar, Yixin Wang, Ambuj Tewari
ICML 2024 On the Identifiability of Switching Dynamical Systems Carles Balsells-Rodas, Yixin Wang, Yingzhen Li
JMLR 2024 Optimization-Based Causal Estimation from Heterogeneous Environments Mingzhang Yin, Yixin Wang, David M. Blei
ICMLW 2024 Tail Extrapolation in Target-Aware Conditional Molecule Generation Weichi Yao, Cameron Gruich, Bryan Goldsmith, Yixin Wang
TMLR 2023 Adjusting Machine Learning Decisions for Equal Opportunity and Counterfactual Fairness Yixin Wang, Dhanya Sridhar, David Blei
UAI 2023 Bidirectional Attention as a Mixture of Continuous Word Experts Kevin C. Wibisono, Yixin Wang
TMLR 2023 Detecting Incidental Correlation in Multimodal Learning via Latent Variable Modeling Taro Makino, Yixin Wang, Krzysztof J. Geras, Kyunghyun Cho
ICML 2023 Interventional Causal Representation Learning Kartik Ahuja, Divyat Mahajan, Yixin Wang, Yoshua Bengio
AISTATS 2023 Learning to Optimize with Stochastic Dominance Constraints Hanjun Dai, Yuan Xue, Niao He, Yixin Wang, Na Li, Dale Schuurmans, Bo Dai
NeurIPSW 2023 Multi-Domain Causal Representation Learning via Weak Distributional Invariances Kartik Ahuja, Amin Mansouri, Yixin Wang
NeurIPS 2023 On Learning Necessary and Sufficient Causal Graphs Hengrui Cai, Yixin Wang, Michael I. Jordan, Rui Song
ICMLW 2023 On the Identifiability of Markov Switching Models Carles Balsells-Rodas, Yixin Wang, Yingzhen Li
NeurIPSW 2023 On the Role of Unstructured Training Data in Transformers' In-Context Learning Capabilities Kevin Christian Wibisono, Yixin Wang
ICMLW 2023 Rethinking Medical Report Generation: Disease Revealing Enhancement with Knowledge Graph Yixin Wang, Zihao Lin, Haoyu Dong
CVPR 2023 SAP-DETR: Bridging the Gap Between Salient Points and Queries-Based Transformer Detector for Fast Model Convergency Yang Liu, Yao Zhang, Yixin Wang, Yang Zhang, Jiang Tian, Zhongchao Shi, Jianping Fan, Zhiqiang He
NeurIPS 2022 Anticipating Performativity by Predicting from Predictions Celestine Mendler-Dünner, Frances Ding, Yixin Wang
NeurIPSW 2022 Dynamic Survival Transformers for Causal Inference with Electronic Health Records Prayag Chatha, Yixin Wang, Zhenke Wu, Jeffrey Regier
NeurIPS 2022 Empirical Gateaux Derivatives for Causal Inference Michael I. Jordan, Yixin Wang, Angela Zhou
TMLR 2022 Identifiable Deep Generative Models via Sparse Decoding Gemma Elyse Moran, Dhanya Sridhar, Yixin Wang, David Blei
NeurIPSW 2022 Interventional Causal Representation Learning Kartik Ahuja, Yixin Wang, Divyat Mahajan, Yoshua Bengio
NeurIPSW 2022 Interventional Causal Representation Learning Kartik Ahuja, Yixin Wang, Divyat Mahajan, Yoshua Bengio
TMLR 2022 Multi-Source Causal Inference Using Control Variates Under Outcome Selection Bias Wenshuo Guo, Serena Lutong Wang, Peng Ding, Yixin Wang, Michael Jordan
ICMLW 2022 Optimization-Based Causal Estimation from Heterogenous Environments Mingzhang Yin, Yixin Wang, David Blei
CLeaR 2022 Partial Identification with Noisy Covariates: A Robust Optimization Approach Wenshuo Guo, Mingzhang Yin, Yixin Wang, Michael Jordan
ICMLW 2022 Representation Learning as Finding Necessary and Sufficient Causes Yixin Wang, Michael Jordan
NeurIPSW 2022 Valid Inference After Causal Discovery Paula Gradu, Tijana Zrnic, Yixin Wang, Michael Jordan
ICML 2021 A Proxy Variable View of Shared Confounding Yixin Wang, David Blei
NeurIPS 2021 Learning Equilibria in Matching Markets from Bandit Feedback Meena Jagadeesan, Alexander Wei, Yixin Wang, Michael I. Jordan, Jacob Steinhardt
NeurIPS 2021 Posterior Collapse and Latent Variable Non-Identifiability Yixin Wang, David M. Blei, John P. Cunningham
NeurIPS 2020 Point Process Models for Sequence Detection in High-Dimensional Neural Spike Trains Alex Williams, Anthony Degleris, Yixin Wang, Scott Linderman
MLHC 2019 The Medical Deconfounder: Assessing Treatment Effects with Electronic Health Records Linying Zhang, Yixin Wang, Anna Ostropolets, Jami J. Mulgrave, David M. Blei, George Hripcsak
NeurIPS 2019 Using Embeddings to Correct for Unobserved Confounding in Networks Victor Veitch, Yixin Wang, David Blei
NeurIPS 2019 Variational Bayes Under Model Misspecification Yixin Wang, David Blei
ICML 2018 Black Box FDR Wesley Tansey, Yixin Wang, David Blei, Raul Rabadan
ICML 2017 Evaluating Bayesian Models with Posterior Dispersion Indices Alp Kucukelbir, Yixin Wang, David M. Blei
ICML 2017 Robust Probabilistic Modeling with Bayesian Data Reweighting Yixin Wang, Alp Kucukelbir, David M. Blei