Wei, Dennis

36 publications

NeurIPS 2025 Fair Continuous Resource Allocation with Equality of Impact Blossom Metevier, Dennis Wei, Karthikeyan Natesan Ramamurthy, Philip S. Thomas
NeurIPS 2025 Final-Model-Only Data Attribution with a Unifying View of Gradient-Based Methods Dennis Wei, Inkit Padhi, Soumya Ghosh, Amit Dhurandhar, Karthikeyan Natesan Ramamurthy, Maria Chang
ICML 2025 Invariance Makes LLM Unlearning Resilient Even to Unanticipated Downstream Fine-Tuning Changsheng Wang, Yihua Zhang, Jinghan Jia, Parikshit Ram, Dennis Wei, Yuguang Yao, Soumyadeep Pal, Nathalie Baracaldo, Sijia Liu
TMLR 2025 The RealHumanEval: Evaluating Large Language Models’ Abilities to Support Programmers Hussein Mozannar, Valerie Chen, Mohammed Alsobay, Subhro Das, Sebastian Zhao, Dennis Wei, Manish Nagireddy, Prasanna Sattigeri, Ameet Talwalkar, David Sontag
AISTATS 2024 Causal Bandits with General Causal Models and Interventions Zirui Yan, Dennis Wei, Dmitriy A Katz, Prasanna Sattigeri, Ali Tajer
NeurIPS 2024 Interventional Causal Discovery in a Mixture of DAGs Burak Varıcı, Dmitriy A. Katz, Dennis Wei, Prasanna Sattigeri, Ali Tajer
ICLR 2024 SalUn: Empowering Machine Unlearning via Gradient-Based Weight Saliency in Both Image Classification and Generation Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, Sijia Liu
NeurIPS 2024 Selective Explanations Lucas Monteiro Paes, Dennis Wei, Flavio P. Calmon
TMLR 2024 Separability Analysis for Causal Discovery in Mixture of DAGs Burak Varici, Dmitriy Katz, Dennis Wei, Prasanna Sattigeri, Ali Tajer
ICMLW 2024 Split, Unlearn, Merge: Leveraging Data Attributes for More Effective Unlearning in LLMs Swanand Kadhe, Farhan Ahmed, Dennis Wei, Nathalie Baracaldo, Inkit Padhi
ICML 2024 Trust Regions for Explanations via Black-Box Probabilistic Certification Amit Dhurandhar, Swagatam Haldar, Dennis Wei, Karthikeyan Natesan Ramamurthy
IJCAI 2024 Using Causal Inference to Investigate Contraceptive Discontinuation in Sub-Saharan Africa Victor Akinwande, Megan MacGregor, Celia Cintas, Ehud Karavani, Dennis Wei, Kush R. Varshney, Pablo A. Nepomnaschy
AISTATS 2023 Convex Bounds on the SoftMax Function with Applications to Robustness Verification Dennis Wei, Haoze Wu, Min Wu, Pin-Yu Chen, Clark Barrett, Eitan Farchi
NeurIPS 2023 Effective Human-AI Teams via Learned Natural Language Rules and Onboarding Hussein Mozannar, Jimin Lee, Dennis Wei, Prasanna Sattigeri, Subhro Das, David Sontag
AISTATS 2023 Heavy Sets with Applications to Interpretable Machine Learning Diagnostics Dmitry Malioutov, Sanjeeb Dash, Dennis Wei
UAI 2023 Interpretable Differencing of Machine Learning Models Swagatam Haldar, Diptikalyan Saha, Dennis Wei, Rahul Nair, Elizabeth M. Daly
JMLR 2023 Interpretable and Fair Boolean Rule Sets via Column Generation Connor Lawless, Sanjeeb Dash, Oktay Gunluk, Dennis Wei
NeurIPSW 2023 Simulating Iterative Human-AI Interaction in Programming with LLMs Hussein Mozannar, Valerie Chen, Dennis Wei, Prasanna Sattigeri, Manish Nagireddy, Subhro Das, Ameet Talwalkar, David Sontag
AISTATS 2023 Who Should Predict? Exact Algorithms for Learning to Defer to Humans Hussein Mozannar, Hunter Lang, Dennis Wei, Prasanna Sattigeri, Subhro Das, David Sontag
AAAI 2022 AI Explainability 360: Impact and Design Vijay Arya, Rachel K. E. Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind, Samuel C. Hoffman, Stephanie Houde, Q. Vera Liao, Ronny Luss, Aleksandra Mojsilovic, Sami Mourad, Pablo Pedemonte, Ramya Raghavendra, John T. Richards, Prasanna Sattigeri, Karthikeyan Shanmugam, Moninder Singh, Kush R. Varshney, Dennis Wei, Yunfeng Zhang
NeurIPS 2022 On the Safety of Interpretable Machine Learning: A Maximum Deviation Approach Dennis Wei, Rahul Nair, Amit Dhurandhar, Kush R Varshney, Elizabeth Daly, Moninder Singh
NeurIPS 2021 CoFrNets: Interpretable Neural Architecture Inspired by Continued Fractions Isha Puri, Amit Dhurandhar, Tejaswini Pedapati, Karthikeyan Shanmugam, Dennis Wei, Kush R Varshney
UAI 2021 Conditionally Independent Data Generation Kartik Ahuja, Prasanna Sattigeri, Karthikeyan Shanmugam, Dennis Wei, Karthikeyan Natesan Ramamurthy, Murat Kocaoglu
ICML 2021 Decision-Making Under Selective Labels: Optimal Finite-Domain Policies and Beyond Dennis Wei
JMLR 2021 Optimized Score Transformation for Consistent Fair Classification Dennis Wei, Karthikeyan Natesan Ramamurthy, Flavio P. Calmon
IJCAI 2021 What Changed? Interpretable Model Comparison Rahul Nair, Massimiliano Mattetti, Elizabeth Daly, Dennis Wei, Oznur Alkan, Yunfeng Zhang
MLOSS 2020 AI Explainability 360: An Extensible Toolkit for Understanding Data and Machine Learning Models Vijay Arya, Rachel K. E. Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind, Samuel C. Hoffman, Stephanie Houde, Q. Vera Liao, Ronny Luss, Aleksandra Mojsilović, Sami Mourad, Pablo Pedemonte, Ramya Raghavendra, John T. Richards, Prasanna Sattigeri, Karthikeyan Shanmugam, Moninder Singh, Kush R. Varshney, Dennis Wei, Yunfeng Zhang
AISTATS 2020 Characterization of Overlap in Observational Studies Michael Oberst, Fredrik Johansson, Dennis Wei, Tian Gao, Gabriel Brat, David Sontag, Kush Varshney
NeurIPS 2020 DAGs with No Fears: A Closer Look at Continuous Optimization for Learning Bayesian Networks Dennis Wei, Tian Gao, Yue Yu
ICML 2020 Is There a Trade-Off Between Fairness and Accuracy? a Perspective Using Mismatched Hypothesis Testing Sanghamitra Dutta, Dennis Wei, Hazar Yueksel, Pin-Yu Chen, Sijia Liu, Kush Varshney
AISTATS 2020 Optimized Score Transformation for Fair Classification Dennis Wei, Karthikeyan Natesan Ramamurthy, Flavio Calmon
ICML 2019 Generalized Linear Rule Models Dennis Wei, Sanjeeb Dash, Tian Gao, Oktay Gunluk
NeurIPS 2018 Boolean Decision Rules via Column Generation Sanjeeb Dash, Oktay Gunluk, Dennis Wei
ICML 2018 Parallel Bayesian Network Structure Learning Tian Gao, Dennis Wei
NeurIPS 2017 Optimized Pre-Processing for Discrimination Prevention Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, Kush R Varshney
NeurIPS 2016 A Constant-Factor Bi-Criteria Approximation Guarantee for K-Means++ Dennis Wei