Willett, Rebecca

36 publications

COLT 2025 Can a Calibration Metric Be Both Testable and Actionable? Raphael Rossellini, Jake A. Soloff, Rina Foygel Barber, Zhimei Ren, Rebecca Willett
NeurIPS 2025 Hierarchical Implicit Neural Emulators Ruoxi Jiang, Xiao Zhang, Karan Jakhar, Peter Y. Lu, Pedram Hassanzadeh, Michael Maire, Rebecca Willett
CVPR 2025 Nested Diffusion Models Using Hierarchical Latent Priors Xiao Zhang, Ruoxi Jiang, Rebecca Willett, Michael Maire
ICLR 2025 Quality Measures for Dynamic Graph Generative Models Ryien Hosseini, Filippo Simini, Venkatram Vishwanath, Rebecca Willett, Henry Hoffmann
NeurIPS 2025 Sketch-Augmented Features Improve Learning Long-Range Dependencies in Graph Neural Networks Ryien Hosseini, Filippo Simini, Venkatram Vishwanath, Rebecca Willett, Henry Hoffmann
TMLR 2025 Stabilizing Black-Box Model Selection with the Inflated Argmax Melissa Adrian, Jake A Soloff, Rebecca Willett
JMLR 2024 Bagging Provides Assumption-Free Stability Jake A. Soloff, Rina Foygel Barber, Rebecca Willett
NeurIPS 2024 Building a Stable Classifier with the Inflated Argmax Jake A. Soloff, Rina Foygel Barber, Rebecca Willett
ICML 2024 Deep Stochastic Mechanics Elena Orlova, Aleksei Ustimenko, Ruoxi Jiang, Peter Y. Lu, Rebecca Willett
COLT 2024 Depth Separation in Norm-Bounded Infinite-Width Neural Networks Suzanna Parkinson, Greg Ongie, Rebecca Willett, Ohad Shamir, Nathan Srebro
AISTATS 2024 Integrating Uncertainty Awareness into Conformalized Quantile Regression Raphael Rossellini, Rina Foygel Barber, Rebecca Willett
ICMLW 2024 Multi-Frequency Progressive Refinement for Learned Inverse Scattering Owen Melia, Olivia Tsang, Vasileios Charisopoulos, Yuehaw Khoo, Jeremy Hoskins, Rebecca Willett
NeurIPSW 2024 Nonlinear Tomographic Reconstruction via Nonsmooth Optimization Vasileios Charisopoulos, Rebecca Willett
TMLR 2023 Rotation-Invariant Random Features Provide a Strong Baseline for Machine Learning on 3D Point Clouds Owen Melia, Eric M Jonas, Rebecca Willett
NeurIPS 2023 Training Neural Operators to Preserve Invariant Measures of Chaotic Attractors Ruoxi Jiang, Peter Y. Lu, Elena Orlova, Rebecca Willett
NeurIPS 2022 Embed and Emulate: Learning to Estimate Parameters of Dynamical Systems with Uncertainty Quantification Ruoxi Jiang, Rebecca Willett
JMLR 2022 Functional Linear Regression with Mixed Predictors Daren Wang, Zifeng Zhao, Yi Yu, Rebecca Willett
ICML 2022 Lazy Estimation of Variable Importance for Large Neural Networks Yue Gao, Abby Stevens, Garvesh Raskutti, Rebecca Willett
AISTATS 2021 Localizing Changes in High-Dimensional Regression Models Alessandro Rinaldo, Daren Wang, Qin Wen, Rebecca Willett, Yi Yu
JMLR 2021 Context-Dependent Networks in Multivariate Time Series: Models, Methods, and Risk Bounds in High Dimensions Lili Zheng, Garvesh Raskutti, Rebecca Willett, Benjamin Mark
NeurIPS 2021 Pure Exploration in Kernel and Neural Bandits Yinglun Zhu, Dongruo Zhou, Ruoxi Jiang, Quanquan Gu, Rebecca Willett, Robert Nowak
JMLR 2021 Statistically and Computationally Efficient Change Point Localization in Regression Settings Daren Wang, Zifeng Zhao, Kevin Z. Lin, Rebecca Willett
ICLR 2020 A Function Space View of Bounded Norm Infinite Width ReLU Nets: The Multivariate Case Greg Ongie, Rebecca Willett, Daniel Soudry, Nathan Srebro
ICML 2019 Bilinear Bandits with Low-Rank Structure Kwang-Sung Jun, Rebecca Willett, Stephen Wright, Robert Nowak
AISTATS 2019 Estimating Network Structure from Incomplete Event Data Benjamin Mark, Garvesh Raskutti, Rebecca Willett
NeurIPSW 2019 Learning to Solve Linear Inverse Problems in Imaging with Neumann Networks Greg Ongie, Davis Gilton, Rebecca Willett
ICML 2017 Algebraic Variety Models for High-Rank Matrix Completion Greg Ongie, Rebecca Willett, Robert D. Nowak, Laura Balzano
MLHC 2017 Hawkes Process Modeling of Adverse Drug Reactions with Longitudinal Observational Data Yujia Bao, Zhaobin Kuang, Peggy Peissig, David Page, Rebecca Willett
AISTATS 2017 Improved Strongly Adaptive Online Learning Using Coin Betting Kwang-Sung Jun, Francesco Orabona, Stephen J. Wright, Rebecca Willett
AAAI 2017 On Learning High Dimensional Structured Single Index Models Ravi Ganti, Nikhil Rao, Laura Balzano, Rebecca Willett, Robert D. Nowak
NeurIPS 2017 Scalable Generalized Linear Bandits: Online Computation and Hashing Kwang-Sung Jun, Aniruddha Bhargava, Robert Nowak, Rebecca Willett
NeurIPS 2017 Subspace Clustering via Tangent Cones Amin Jalali, Rebecca Willett
NeurIPS 2015 Matrix Completion Under Monotonic Single Index Models Ravi Sastry Ganti, Laura Balzano, Rebecca Willett
ICML 2013 Dynamical Models and Tracking Regret in Online Convex Programming Eric Hall, Rebecca Willett
NeurIPS 2008 Near-Minimax Recursive Density Estimation on the Binary Hypercube Maxim Raginsky, Svetlana Lazebnik, Rebecca Willett, Jorge Silva
NeurIPS 2005 Faster Rates in Regression via Active Learning Rebecca Willett, Robert Nowak, Rui M. Castro