Williamson, Robert

8 publications

TMLR 2025 Aggregating Algorithm and Axiomatic Loss Aggregation Armando J Cabrera Pacheco, Rabanus Derr, Robert Williamson
ICML 2023 Random Classification Noise Does Not Defeat All Convex Potential Boosters Irrespective of Model Choice Yishay Mansour, Richard Nock, Robert Williamson
TMLR 2023 Tailoring to the Tails: Risk Measures for Fine-Grained Tail Sensitivity Christian Fröhlich, Robert Williamson
TMLR 2023 The Geometry of Mixability Armando J Cabrera Pacheco, Robert Williamson
ICML 2019 Fairness Risk Measures Robert Williamson, Aditya Menon
ICML 2019 Lossless or Quantized Boosting with Integer Arithmetic Richard Nock, Robert Williamson
AISTATS 2010 Convexity of Proper Composite Binary Losses Mark Reid, Robert Williamson
JMLR 2007 The Need for Open Source Software in Machine Learning Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Leon Bottou, Geoffrey Holmes, Yann LeCun, Klaus-Robert Müller, Fernando Pereira, Carl Edward Rasmussen, Gunnar Rätsch, Bernhard Schölkopf, Alexander Smola, Pascal Vincent, Jason Weston, Robert Williamson