ML Anthology
Authors
Search
About
Williamson, Robert C.
69 publications
JMLR
2025
Geometry and Stability of Supervised Learning Problems
Facundo Mémoli
,
Brantley Vose
,
Robert C. Williamson
JMLR
2024
Information Processing Equalities and the Information–Risk Bridge
Robert C. Williamson
,
Zac Cranko
JMLR
2024
Risk Measures and Upper Probabilities: Coherence and Stratification
Christian Fröhlich
,
Robert C. Williamson
JMLR
2023
The Geometry and Calculus of Losses
Robert C. Williamson
,
Zac Cranko
ISIPTA
2023
The Set Structure of Precision
Rabanus Derr
,
Robert C. Williamson
ISIPTA
2023
Towards a Strictly Frequentist Theory of Imprecise Probability
Christian Fröhlich
,
Rabanus Derr
,
Robert C. Williamson
NeurIPS
2020
PAC-Bayesian Bound for the Conditional Value at Risk
Zakaria Mhammedi
,
Benjamin Guedj
,
Robert C. Williamson
NeurIPS
2019
A Primal-Dual Link Between GANs and Autoencoders
Hisham Husain
,
Richard Nock
,
Robert C. Williamson
NeurIPS
2018
A Loss Framework for Calibrated Anomaly Detection
Aditya Krishna Menon
,
Robert C. Williamson
NeurIPS
2018
Constant Regret, Generalized Mixability, and Mirror Descent
Zakaria Mhammedi
,
Robert C. Williamson
NeurIPS
2017
F-GANs in an Information Geometric Nutshell
Richard Nock
,
Zac Cranko
,
Aditya K Menon
,
Lizhen Qu
,
Robert C. Williamson
JMLR
2016
Bipartite Ranking: A Risk-Theoretic Perspective
Aditya Krishna Menon
,
Robert C. Williamson
JMLR
2016
Composite Multiclass Losses
Robert C. Williamson
,
Elodie Vernet
,
Mark D. Reid
COLT
2015
Exp-Concavity of Proper Composite Losses
Parameswaran Kamalaruban
,
Robert C. Williamson
,
Xinhua Zhang
JMLR
2015
Fast Rates in Statistical and Online Learning
Tim van Erven
,
Peter D. Grünwald
,
Nishant A. Mehta
,
Mark D. Reid
,
Robert C. Williamson
COLT
2015
Generalized Mixability via Entropic Duality
Mark D. Reid
,
Rafael M. Frongillo
,
Robert C. Williamson
,
Nishant A. Mehta
NeurIPS
2015
Learning with Symmetric Label Noise: The Importance of Being Unhinged
Brendan van Rooyen
,
Aditya Menon
,
Robert C. Williamson
COLT
2014
Bayes-Optimal Scorers for Bipartite Ranking
Aditya Krishna Menon
,
Robert C. Williamson
COLT
2014
Elicitation and Identification of Properties
Ingo Steinwart
,
Chloé Pasin
,
Robert C. Williamson
,
Siyu Zhang
NeurIPS
2014
From Stochastic Mixability to Fast Rates
Nishant A Mehta
,
Robert C. Williamson
COLT
2014
On the Consistency of Output Code Based Learning Algorithms for Multiclass Learning Problems
Harish G. Ramaswamy
,
Balaji Srinivasan Babu
,
Shivani Agarwal
,
Robert C. Williamson
COLT
2014
The Geometry of Losses
Robert C. Williamson
COLT
2012
Divergences and Risks for Multiclass Experiments
Dario García-García
,
Robert C. Williamson
JMLR
2012
Mixability Is Bayes Risk Curvature Relative to Log Loss
Tim van Erven
,
Mark D. Reid
,
Robert C. Williamson
NeurIPS
2012
Mixability in Statistical Learning
Tim V. Erven
,
Peter Grünwald
,
Mark D. Reid
,
Robert C. Williamson
COLT
2012
Preface
Shie Mannor
,
Nathan Srebro
,
Robert C. Williamson
ICML
2012
The Convexity and Design of Composite Multiclass Losses
Mark D. Reid
,
Robert C. Williamson
,
Peng Sun
NeurIPS
2011
Composite Multiclass Losses
Elodie Vernet
,
Mark D. Reid
,
Robert C. Williamson
JMLR
2011
Information, Divergence and Risk for Binary Experiments
Mark D. Reid
,
Robert C. Williamson
COLT
2011
Mixability Is Bayes Risk Curvature Relative to Log Loss
Tim Erven
,
Mark D. Reid
,
Robert C. Williamson
JMLR
2010
Composite Binary Losses
Mark D. Reid
,
Robert C. Williamson
COLT
2009
Generalised Pinsker Inequalities
Mark D. Reid
,
Robert C. Williamson
ICML
2009
Surrogate Regret Bounds for Proper Losses
Mark D. Reid
,
Robert C. Williamson
ALT
2005
Learnability of Probabilistic Automata via Oracles
Omri Guttman
,
S. V. N. Vishwanathan
,
Robert C. Williamson
JMLR
2005
Learning the Kernel with Hyperkernels
Cheng Soon Ong
,
Alexander J. Smola
,
Robert C. Williamson
COLT
2002
Agnostic Learning Nonconvex Function Classes
Shahar Mendelson
,
Robert C. Williamson
JMLR
2002
Algorithmic Luckiness
Ralf Herbrich
,
Robert C. Williamson
NeurIPS
2002
Hyperkernels
Cheng S. Ong
,
Robert C. Williamson
,
Alex J. Smola
ALT
2002
Large Margin Classification for Moving Targets
Jyrki Kivinen
,
Alexander J. Smola
,
Robert C. Williamson
NeurIPS
2001
Algorithmic Luckiness
Ralf Herbrich
,
Robert C. Williamson
COLT
2001
Computational Learning Theory, 14th Annual Conference on Computational Learning Theory, COLT 2001 and 5th European Conference on Computational Learning Theory, EuroCOLT 2001, Amsterdam, the Netherlands, July 16-19, 2001, Proceedings
David P. Helmbold
,
Robert C. Williamson
NeCo
2001
Estimating the Support of a High-Dimensional Distribution
Bernhard Schölkopf
,
John C. Platt
,
John Shawe-Taylor
,
Alexander J. Smola
,
Robert C. Williamson
NeurIPS
2001
Kernel Machines and Boolean Functions
Adam Kowalczyk
,
Alex J. Smola
,
Robert C. Williamson
NeurIPS
2001
Online Learning with Kernels
Jyrki Kivinen
,
Alex J. Smola
,
Robert C. Williamson
JMLR
2001
Prior Knowledge and Preferential Structures in Gradient Descent Learning Algorithms
Robert E. Mahony
,
Robert C. Williamson
JMLR
2001
Regularized Principal Manifolds (Kernel Machines Section)
Alexander J. Smola
,
Sebastian Mika
,
Bernhard Schölkopf
,
Robert C. Williamson
COLT
2000
Entropy Numbers of Linear Function Classes
Robert C. Williamson
,
Alexander J. Smola
,
Bernhard Schölkopf
NeurIPS
2000
From Margin to Sparsity
Thore Graepel
,
Ralf Herbrich
,
Robert C. Williamson
NeCo
2000
New Support Vector Algorithms
Bernhard Schölkopf
,
Alexander J. Smola
,
Robert C. Williamson
,
Peter L. Bartlett
NeurIPS
2000
Regularization with Dot-Product Kernels
Alex J. Smola
,
Zoltán L. Óvári
,
Robert C. Williamson
COLT
1999
Covering Numbers for Support Vector Machines
Ying Guo
,
Peter L. Bartlett
,
John Shawe-Taylor
,
Robert C. Williamson
NeurIPS
1999
Support Vector Method for Novelty Detection
Bernhard Schölkopf
,
Robert C. Williamson
,
Alex J. Smola
,
John Shawe-Taylor
,
John C. Platt
NeurIPS
1999
The Entropy Regularization Information Criterion
Alex J. Smola
,
John Shawe-Taylor
,
Bernhard Schölkopf
,
Robert C. Williamson
NeurIPS
1998
Shrinking the Tube: A New Support Vector Regression Algorithm
Bernhard Schölkopf
,
Peter L. Bartlett
,
Alex J. Smola
,
Robert C. Williamson
COLT
1997
A PAC Analysis of a Bayesian Estimator
John Shawe-Taylor
,
Robert C. Williamson
NeCo
1997
Correction to 'Lower Bounds on the VC-Dimension of Smoothly Parametrized Function Classes'
Wee Sun Lee
,
Peter L. Bartlett
,
Robert C. Williamson
COLT
1996
A Framework for Structural Risk Minimisation
John Shawe-Taylor
,
Peter L. Bartlett
,
Robert C. Williamson
,
Martin Anthony
COLT
1996
The Importance of Convexity in Learning with Squared Loss
Wee Sun Lee
,
Peter L. Bartlett
,
Robert C. Williamson
NeCo
1996
The VC Dimension and Pseudodimension of Two-Layer Neural Networks with Discrete Inputs
Peter L. Bartlett
,
Robert C. Williamson
NeurIPS
1995
Examples of Learning Curves from a Modified VC-Formalism
Adam Kowalczyk
,
Jacek Szymanski
,
Peter L. Bartlett
,
Robert C. Williamson
NeCo
1995
Lower Bounds on the VC Dimension of Smoothly Parameterized Function Classes
Wee Sun Lee
,
Peter L. Bartlett
,
Robert C. Williamson
COLT
1995
On Efficient Agnostic Learning of Linear Combinations of Basis Functions
Wee Sun Lee
,
Peter L. Bartlett
,
Robert C. Williamson
COLT
1995
Online Learning via Congregational Gradient Descent
Kim L. Blackmore
,
Robert C. Williamson
,
Iven M. Y. Mareels
,
William A. Sethares
COLT
1994
Fat-Shattering and the Learnability of Real-Valued Functions
Peter L. Bartlett
,
Philip M. Long
,
Robert C. Williamson
COLT
1994
Lower Bounds on the VC-Dimension of Smoothly Parametrized Function Classes
Wee Sun Lee
,
Peter L. Bartlett
,
Robert C. Williamson
NeurIPS
1992
Rational Parametrizations of Neural Networks
Uwe Helmke
,
Robert C. Williamson
COLT
1991
Investigating the Distribution Assumptions in the Pac Learning Model
Peter L. Bartlett
,
Robert C. Williamson
NeurIPS
1991
Splines, Rational Functions and Neural Networks
Robert C. Williamson
,
Peter L. Bartlett
NeurIPS
1990
E-Entropy and the Complexity of Feedforward Neural Networks
Robert C. Williamson