ML Anthology
Authors
Search
About
Wipf, David P.
32 publications
NeurIPS
2022
Descent Steps of a Relation-Aware Energy Produce Heterogeneous Graph Neural Networks
Hongjoon Ahn
,
Yongyi Yang
,
Quan Gan
,
Taesup Moon
,
David P Wipf
NeurIPS
2022
Learning Enhanced Representation for Tabular Data via Neighborhood Propagation
Kounianhua Du
,
Weinan Zhang
,
Ruiwen Zhou
,
Yangkun Wang
,
Xilong Zhao
,
Jiarui Jin
,
Quan Gan
,
Zheng Zhang
,
David P Wipf
NeurIPS
2022
Learning Manifold Dimensions with Conditional Variational Autoencoders
Yijia Zheng
,
Tong He
,
Yixuan Qiu
,
David P Wipf
NeurIPS
2022
NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification
Qitian Wu
,
Wentao Zhao
,
Zenan Li
,
David P Wipf
,
Junchi Yan
NeurIPS
2022
Self-Supervised Amodal Video Object Segmentation
Jian Yao
,
Yuxin Hong
,
Chiyu Wang
,
Tianjun Xiao
,
Tong He
,
Francesco Locatello
,
David P Wipf
,
Yanwei Fu
,
Zheng Zhang
NeurIPS
2022
Transformers from an Optimization Perspective
Yongyi Yang
,
Zengfeng Huang
,
David P Wipf
NeurIPS
2021
A Biased Graph Neural Network Sampler with Near-Optimal Regret
Qingru Zhang
,
David P. Wipf
,
Quan Gan
,
Le Song
NeurIPS
2021
From Canonical Correlation Analysis to Self-Supervised Graph Neural Networks
Hengrui Zhang
,
Qitian Wu
,
Junchi Yan
,
David P. Wipf
,
Philip S Yu
NeurIPS
2021
GRIN: Generative Relation and Intention Network for Multi-Agent Trajectory Prediction
Longyuan Li
,
Jian Yao
,
Li Wenliang
,
Tong He
,
Tianjun Xiao
,
Junchi Yan
,
David P. Wipf
,
Zheng Zhang
NeurIPS
2021
On the Value of Infinite Gradients in Variational Autoencoder Models
Bin Dai
,
Li Wenliang
,
David P. Wipf
NeurIPS
2020
Further Analysis of Outlier Detection with Deep Generative Models
Ziyu Wang
,
Bin Dai
,
David P. Wipf
,
Jun Zhu
UAI
2017
Data-Dependent Sparsity for Subspace Clustering
Bo Xin
,
Yizhou Wang
,
Wen Gao
,
David P. Wipf
UAI
2017
Green Generative Modeling: Recycling Dirty Data Using Recurrent Variational Autoencoders
Yu Wang
,
Bin Dai
,
Gang Hua
,
John A. D. Aston
,
David P. Wipf
UAI
2016
Subspace Clustering with a Twist
David P. Wipf
,
Yue Dong
,
Bo Xin
UAI
2015
Clustered Sparse Bayesian Learning
Yu Wang
,
David P. Wipf
,
Jeong-Min Yun
,
Wei Chen
,
Ian J. Wassell
AISTATS
2015
Understanding and Evaluating Sparse Linear Discriminant Analysis
Yi Wu
,
David P. Wipf
,
Jeong-Min Yun
NeurIPS
2012
Dual-Space Analysis of the Sparse Linear Model
Yi Wu
,
David P. Wipf
CVPR
2012
Learning Sparse Covariance Patterns for Natural Scenes
Liwei Wang
,
Yin Li
,
Jiaya Jia
,
Jian Sun
,
David P. Wipf
,
James M. Rehg
UAI
2012
Non-Convex Rank Minimization via an Empirical Bayesian Approach
David P. Wipf
CVPR
2012
Robust Photometric Stereo Using Sparse Regression
Satoshi Ikehata
,
David P. Wipf
,
Yasuyuki Matsushita
,
Kiyoharu Aizawa
NeurIPS
2011
Sparse Estimation with Structured Dictionaries
David P. Wipf
NeurIPS
2009
Sparse Estimation Using General Likelihoods and Non-Factorial Priors
David P. Wipf
,
Srikantan S. Nagarajan
NeurIPS
2008
Estimating the Location and Orientation of Complex, Correlated Neural Activity Using MEG
Julia Owen
,
Hagai T. Attias
,
Kensuke Sekihara
,
Srikantan S. Nagarajan
,
David P. Wipf
NeurIPS
2007
A New View of Automatic Relevance Determination
David P. Wipf
,
Srikantan S. Nagarajan
ICML
2007
Beamforming Using the Relevance Vector Machine
David P. Wipf
,
Srikantan S. Nagarajan
NeurIPS
2006
Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization
Rey Ramírez
,
Jason Palmer
,
Scott Makeig
,
Bhaskar D. Rao
,
David P. Wipf
NeurIPS
2005
Comparing the Effects of Different Weight Distributions on Finding Sparse Representations
Bhaskar D. Rao
,
David P. Wipf
CVPR
2005
Lane Change Intent Analysis Using Robust Operators and Sparse Bayesian Learning
Joel C. McCall
,
Mohan M. Trivedi
,
David P. Wipf
,
Bhaskar D. Rao
CVPRW
2005
Lane Change Intent Analysis Using Robust Operators and Sparse Bayesian Learning
Joel C. McCall
,
Mohan M. Trivedi
,
David P. Wipf
,
Bhaskar D. Rao
NeurIPS
2005
Variational EM Algorithms for Non-Gaussian Latent Variable Models
Jason Palmer
,
Kenneth Kreutz-Delgado
,
Bhaskar D. Rao
,
David P. Wipf
NeurIPS
2004
ℓ₀-Norm Minimization for Basis Selection
David P. Wipf
,
Bhaskar D. Rao
NeurIPS
2003
Perspectives on Sparse Bayesian Learning
Jason Palmer
,
Bhaskar D. Rao
,
David P. Wipf