ML Anthology
Authors
Search
About
Wu, Kaiwen
13 publications
NeurIPSW
2024
A Fast, Robust Elliptical Slice Sampling Method for Truncated Multivariate Normal Distributions
Kaiwen Wu
,
Jacob R. Gardner
NeurIPS
2024
Computation-Aware Gaussian Processes: Model Selection and Linear-Time Inference
Jonathan Wenger
,
Kaiwen Wu
,
Philipp Hennig
,
Jacob R. Gardner
,
Geoff Pleiss
,
John P. Cunningham
AISTATS
2024
Large-Scale Gaussian Processes via Alternating Projection
Kaiwen Wu
,
Jonathan Wenger
,
Haydn T Jones
,
Geoff Pleiss
,
Jacob Gardner
ICML
2024
Understanding Stochastic Natural Gradient Variational Inference
Kaiwen Wu
,
Jacob R. Gardner
AISTATS
2023
Discovering Many Diverse Solutions with Bayesian Optimization
Natalie Maus
,
Kaiwen Wu
,
David Eriksson
,
Jacob Gardner
NeurIPS
2023
On the Convergence of Black-Box Variational Inference
Kyurae Kim
,
Jisu Oh
,
Kaiwen Wu
,
Yian Ma
,
Jacob Gardner
ICML
2023
Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Kyurae Kim
,
Kaiwen Wu
,
Jisu Oh
,
Jacob R. Gardner
NeurIPS
2023
The Behavior and Convergence of Local Bayesian Optimization
Kaiwen Wu
,
Kyurae Kim
,
Roman Garnett
,
Jacob Gardner
NeurIPS
2023
Variational Gaussian Processes with Decoupled Conditionals
Xinran Zhu
,
Kaiwen Wu
,
Natalie Maus
,
Jacob Gardner
,
David Bindel
NeurIPS
2022
Local Bayesian Optimization via Maximizing Probability of Descent
Quan Nguyen
,
Kaiwen Wu
,
Jacob Gardner
,
Roman Garnett
AISTATS
2020
On Minimax Optimality of GANs for Robust Mean Estimation
Kaiwen Wu
,
Gavin Weiguang Ding
,
Ruitong Huang
,
Yaoliang Yu
ICML
2020
Stronger and Faster Wasserstein Adversarial Attacks
Kaiwen Wu
,
Allen Wang
,
Yaoliang Yu
ICML
2019
Distributional Reinforcement Learning for Efficient Exploration
Borislav Mavrin
,
Hengshuai Yao
,
Linglong Kong
,
Kaiwen Wu
,
Yaoliang Yu