ML Anthology
Authors
Search
About
Wu, Mike
12 publications
NeurIPS
2022
Foundation Posteriors for Approximate Probabilistic Inference
Mike Wu
,
Noah Goodman
ICLRW
2022
Know Thy Student: Interactive Learning with Gaussian Processes
Rose E Wang
,
Mike Wu
,
Noah Goodman
ICLR
2021
Conditional Negative Sampling for Contrastive Learning of Visual Representations
Mike Wu
,
Milan Mosse
,
Chengxu Zhuang
,
Daniel Yamins
,
Noah Goodman
NeurIPS
2021
Improving Compositionality of Neural Networks by Decoding Representations to Inputs
Mike Wu
,
Noah Goodman
,
Stefano Ermon
JAIR
2021
Optimizing for Interpretability in Deep Neural Networks with Tree Regularization
Mike Wu
,
Sonali Parbhoo
,
Michael C. Hughes
,
Volker Roth
,
Finale Doshi-Velez
ICLR
2021
Viewmaker Networks: Learning Views for Unsupervised Representation Learning
Alex Tamkin
,
Mike Wu
,
Noah Goodman
AAAI
2020
Meta-Amortized Variational Inference and Learning
Mike Wu
,
Kristy Choi
,
Noah D. Goodman
,
Stefano Ermon
AAAI
2020
Regional Tree Regularization for Interpretability in Deep Neural Networks
Mike Wu
,
Sonali Parbhoo
,
Michael C. Hughes
,
Ryan Kindle
,
Leo A. Celi
,
Maurizio Zazzi
,
Volker Roth
,
Finale Doshi-Velez
AISTATS
2019
Differentiable Antithetic Sampling for Variance Reduction in Stochastic Variational Inference
Mike Wu
,
Noah Goodman
,
Stefano Ermon
AAAI
2019
Zero Shot Learning for Code Education: Rubric Sampling with Deep Learning Inference
Mike Wu
,
Milan Mosse
,
Noah D. Goodman
,
Chris Piech
AAAI
2018
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
Mike Wu
,
Michael C. Hughes
,
Sonali Parbhoo
,
Maurizio Zazzi
,
Volker Roth
,
Finale Doshi-Velez
NeurIPS
2018
Multimodal Generative Models for Scalable Weakly-Supervised Learning
Mike Wu
,
Noah Goodman