Wu, Shu

25 publications

ICLR 2025 MolSpectra: Pre-Training 3D Molecular Representation with Multi-Modal Energy Spectra Liang Wang, Shaozhen Liu, Yu Rong, Deli Zhao, Qiang Liu, Shu Wu, Liang Wang
NeurIPS 2025 Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing Junfei Wu, Jian Guan, Kaituo Feng, Qiang Liu, Shu Wu, Liang Wang, Wei Wu, Tieniu Tan
NeurIPS 2025 The Underappreciated Power of Vision Models for Graph Structural Understanding Xinjian Zhao, Wei Pang, Zhongkai Xue, Xiangru Jian, Lei Zhang, Yaoyao Xu, Xiaozhuang Song, Shu Wu, Tianshu Yu
ICLR 2025 Uncovering Overfitting in Large Language Model Editing Mengqi Zhang, Xiaotian Ye, Qiang Liu, Shu Wu, Pengjie Ren, Zhumin Chen
NeurIPS 2024 Beyond Efficiency: Molecular Data Pruning for Enhanced Generalization Dingshuo Chen, Zhixun Li, Yuyan Ni, Guibin Zhang, Ding Wang, Qiang Liu, Shu Wu, Jeffrey Xu Yu, Liang Wang
AAAI 2024 Heterogeneous Graph Reasoning for Fact Checking over Texts and Tables Haisong Gong, Weizhi Xu, Shu Wu, Qiang Liu, Liang Wang
NeurIPS 2024 Pin-Tuning: Parameter-Efficient In-Context Tuning for Few-Shot Molecular Property Prediction Liang Wang, Qiang Liu, Shaozhen Liu, Xin Sun, Shu Wu, Liang Wang
AAAI 2024 Rethinking Graph Masked Autoencoders Through Alignment and Uniformity Liang Wang, Xiang Tao, Qiang Liu, Shu Wu, Liang Wang
AAAI 2024 Text-Guided Molecule Generation with Diffusion Language Model Haisong Gong, Qiang Liu, Shu Wu, Liang Wang
NeurIPS 2024 VLKEB: A Large Vision-Language Model Knowledge Editing Benchmark Han Huang, Haitian Zhong, Tao Yu, Qiang Liu, Shu Wu, Liang Wang, Tieniu Tan
NeurIPS 2023 GSLB: The Graph Structure Learning Benchmark Zhixun Li, Liang Wang, Xin Sun, Yifan Luo, Yanqiao Zhu, Dingshuo Chen, Yingtao Luo, Xiangxin Zhou, Qiang Liu, Shu Wu, Liang Wang, Jeffrey Yu
NeurIPS 2023 Uncovering Neural Scaling Laws in Molecular Representation Learning Dingshuo Chen, Yanqiao Zhu, Jieyu Zhang, Yuanqi Du, Zhixun Li, Qiang Liu, Shu Wu, Liang Wang
LoG 2022 A Survey on Deep Graph Generation: Methods and Applications Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, Shu Wu
ICMLW 2022 Featurizations Matter: A Multiview Contrastive Learning Approach to Molecular Pretraining Yanqiao Zhu, Dingshuo Chen, Yuanqi Du, Yingze Wang, Qiang Liu, Shu Wu
IJCAI 2022 GraphDIVE: Graph Classification by Mixture of Diverse Experts Fenyu Hu, Liping Wang, Qiang Liu, Shu Wu, Liang Wang, Tieniu Tan
AAAI 2021 A Graph-Based Relevance Matching Model for Ad-Hoc Retrieval Yufeng Zhang, Jinghao Zhang, Zeyu Cui, Shu Wu, Liang Wang
AAAI 2021 Cold-Start Sequential Recommendation via Meta Learner Yujia Zheng, Siyi Liu, Zekun Li, Shu Wu
AAAI 2020 Independence Promoted Graph Disentangled Networks Yanbei Liu, Xiao Wang, Shu Wu, Zhitao Xiao
IJCAI 2019 Hierarchical Graph Convolutional Networks for Semi-Supervised Node Classification Fenyu Hu, Yanqiao Zhu, Shu Wu, Liang Wang, Tieniu Tan
AAAI 2019 Session-Based Recommendation with Graph Neural Networks Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, Tieniu Tan
IJCAI 2017 A Convolutional Approach for Misinformation Identification Feng Yu, Qiang Liu, Shu Wu, Liang Wang, Tieniu Tan
AAAI 2016 Information Credibility Evaluation on Social Media Shu Wu, Qiang Liu, Yong Liu, Liang Wang, Tieniu Tan
AAAI 2016 Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts Qiang Liu, Shu Wu, Liang Wang, Tieniu Tan
AAAI 2016 SAPE: A System for Situation-Aware Public Security Evaluation Shu Wu, Qiang Liu, Ping Bai, Liang Wang, Tieniu Tan
AAAI 2015 COT: Contextual Operating Tensor for Context-Aware Recommender Systems Qiang Liu, Shu Wu, Liang Wang