Xie, Pengtao

46 publications

TMLR 2025 BiDoRA: Bi-Level Optimization-Based Weight-Decomposed Low-Rank Adaptation Peijia Qin, Ruiyi Zhang, Pengtao Xie
TMLR 2025 Downstream Task Guided Masking Learning in Masked Autoencoders Using Multi-Level Optimization Han Guo, Ramtin Hosseini, Ruiyi Zhang, Sai Ashish Somayajula, Ranak Roy Chowdhury, Rajesh K. Gupta, Pengtao Xie
NeurIPS 2025 DreamPRM: Domain-Reweighted Process Reward Model for Multimodal Reasoning Qi Cao, Ruiyi Wang, Ruiyi Zhang, Sai Ashish Somayajula, Pengtao Xie
NeurIPS 2025 ExGra-Med: Extended Context Graph Alignment for Medical Vision-Language Models Duy Minh Ho Nguyen, Nghiem Tuong Diep, Trung Quoc Nguyen, Hoang-Bao Le, Tai Nguyen, Anh-Tien Nguyen, TrungTin Nguyen, Nhat Ho, Pengtao Xie, Roger Wattenhofer, Daniel Sonntag, James Zou, Mathias Niepert
TMLR 2025 TapWeight: Reweighting Pretraining Objectives for Task-Adaptive Pretraining Ruiyi Zhang, Sai Ashish Somayajula, Pengtao Xie
NeurIPS 2024 Accelerating Transformers with Spectrum-Preserving Token Merging Hoai-Chau Tran, Duy M. H. Nguyen, Duy M. Nguyen, TrungTin Nguyen, Ngan Le, Pengtao Xie, Daniel Sonntag, James Zou, Binh T. Nguyen, Mathias Niepert
ICML 2024 BLO-SAM: Bi-Level Optimization Based Finetuning of the Segment Anything Model for Overfitting-Preventing Semantic Segmentation Li Zhang, Youwei Liang, Ruiyi Zhang, Amirhosein Javadi, Pengtao Xie
ICML 2024 Leverage Class-Specific Accuracy to Guide Data Generation for Improving Image Classification Jay Gala, Pengtao Xie
ICML 2024 Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for Large Language Models Mingjia Huo, Sai Ashish Somayajula, Youwei Liang, Ruisi Zhang, Farinaz Koushanfar, Pengtao Xie
TMLR 2024 Transformer Architecture Search for Improving Out-of-Domain Generalization in Machine Translation Yiheng He, Ruiyi Zhang, Sai Ashish Somayajula, Pengtao Xie
ICLR 2023 Betty: An Automatic Differentiation Library for Multilevel Optimization Sang Keun Choe, Willie Neiswanger, Pengtao Xie, Eric Xing
ICML 2023 Fair and Accurate Decision Making Through Group-Aware Learning Ramtin Hosseini, Li Zhang, Bhanu Garg, Pengtao Xie
ICML 2023 Improving Bi-Level Optimization Based Methods with Inspiration from Humans’ Classroom Study Techniques Pengtao Xie
ICLR 2023 Improving Differentiable Neural Architecture Search by Encouraging Transferability Parth Sheth, Pengtao Xie
AAAI 2023 Joint Self-Supervised Image-Volume Representation Learning with Intra-Inter Contrastive Clustering Duy M. H. Nguyen, Hoang Nguyen, Truong Thanh Nhat Mai, Tri Cao, Binh T. Nguyen, Nhat Ho, Paul Swoboda, Shadi Albarqouni, Pengtao Xie, Daniel Sonntag
NeurIPS 2023 LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical Imaging via Second-Order Graph Matching Duy M. H. Nguyen, Hoang Nguyen, Nghiem Diep, Tan Ngoc Pham, Tri Cao, Binh Nguyen, Paul Swoboda, Nhat Ho, Shadi Albarqouni, Pengtao Xie, Daniel Sonntag, Mathias Niepert
ICML 2023 Learning Compiler Pass Orders Using Coreset and Normalized Value Prediction Youwei Liang, Kevin Stone, Ali Shameli, Chris Cummins, Mostafa Elhoushi, Jiadong Guo, Benoit Steiner, Xiaomeng Yang, Pengtao Xie, Hugh James Leather, Yuandong Tian
NeurIPS 2023 Making Scalable Meta Learning Practical Sang Choe, Sanket Vaibhav Mehta, Hwijeen Ahn, Willie Neiswanger, Pengtao Xie, Emma Strubell, Eric P. Xing
NeurIPSW 2023 On the Out of Distribution Robustness of Foundation Models in Medical Image Segmentation Duy Minh Ho Nguyen, Tan Ngoc Pham, Nghiem Tuong Diep, Nghi Quoc Phan, Quang Pham, Vinh Tong, Binh T. Nguyen, Ngan Hoang Le, Nhat Ho, Pengtao Xie, Daniel Sonntag, Mathias Niepert
NeurIPSW 2022 Betty: An Automatic Differentiation Library for Multilevel Optimization Sang Keun Choe, Willie Neiswanger, Pengtao Xie, Eric Xing
ICLR 2022 EViT: Expediting Vision Transformers via Token Reorganizations Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, Pengtao Xie
ICML 2022 Graph Neural Architecture Search Under Distribution Shifts Yijian Qin, Xin Wang, Ziwei Zhang, Pengtao Xie, Wenwu Zhu
AAAI 2022 Learning from Mistakes - A Framework for Neural Architecture Search Bhanu Garg, Li Zhang, Pradyumna Sridhara, Ramtin Hosseini, Eric P. Xing, Pengtao Xie
CVPR 2022 Performance-Aware Mutual Knowledge Distillation for Improving Neural Architecture Search Pengtao Xie, Xuefeng Du
NeurIPS 2022 Saliency-Aware Neural Architecture Search Ramtin Hosseini, Pengtao Xie
AAAI 2021 Contrastive Self-Supervised Learning for Graph Classification Jiaqi Zeng, Pengtao Xie
CVPR 2021 DSRNA: Differentiable Search of Robust Neural Architectures Ramtin Hosseini, Xingyi Yang, Pengtao Xie
AAAI 2021 Explaining a Black-Box by Using a Deep Variational Information Bottleneck Approach Seo-Jin Bang, Pengtao Xie, Heewook Lee, Wei Wu, Eric P. Xing
IJCAI 2020 Generalized Zero-Shot Text Classification for ICD Coding Congzheng Song, Shanghang Zhang, Najmeh Sadoughi, Pengtao Xie, Eric P. Xing
MLHC 2019 Multimodal Machine Learning for Automated ICD Coding Keyang Xu, Mike Lam, Jingzhi Pang, Xin Gao, Charlotte Band, Piyush Mathur, Frank Papay, Ashish K. Khanna, Jacek B. Cywinski, Kamal Maheshwari, Pengtao Xie, Eric P. Xing
NeurIPS 2019 Specific and Shared Causal Relation Modeling and Mechanism-Based Clustering Biwei Huang, Kun Zhang, Pengtao Xie, Mingming Gong, Eric P Xing, Clark Glymour
MLHC 2018 Effective Use of Bidirectional Language Modeling for Transfer Learning in Biomedical Named Entity Recognition Devendra Singh Sachan, Pengtao Xie, Mrinmaya Sachan, Eric P. Xing
ICML 2018 Nonoverlap-Promoting Variable Selection Pengtao Xie, Hongbao Zhang, Yichen Zhu, Eric Xing
ICML 2018 Orthogonality-Promoting Distance Metric Learning: Convex Relaxation and Theoretical Analysis Pengtao Xie, Wei Wu, Yichen Zhu, Eric Xing
ICCV 2017 Deep Determinantal Point Process for Large-Scale Multi-Label Classification Pengtao Xie, Ruslan Salakhutdinov, Luntian Mou, Eric P. Xing
IJCAI 2017 Improving the Generalization Performance of Multi-Class SVM via Angular Regularization Jianxin Li, Haoyi Zhou, Pengtao Xie, Yingchun Zhang
ICML 2017 Learning Latent Space Models with Angular Constraints Pengtao Xie, Yuntian Deng, Yi Zhou, Abhimanu Kumar, Yaoliang Yu, James Zou, Eric P. Xing
UAI 2017 Near-Orthogonality Regularization in Kernel Methods Pengtao Xie, Barnabás Póczos, Eric P. Xing
ICML 2017 Uncorrelation and Evenness: A New Diversity-Promoting Regularizer Pengtao Xie, Aarti Singh, Eric P. Xing
ICML 2016 Diversity-Promoting Bayesian Learning of Latent Variable Models Pengtao Xie, Jun Zhu, Eric Xing
UAI 2016 Lighter-Communication Distributed Machine Learning via Sufficient Factor Broadcasting Pengtao Xie, Jin Kyu Kim, Yi Zhou, Qirong Ho, Abhimanu Kumar, Yaoliang Yu, Eric P. Xing
AAAI 2015 Integrating Image Clustering and Codebook Learning Pengtao Xie, Eric P. Xing
ECML-PKDD 2015 Learning Compact and Effective Distance Metrics with Diversity Regularization Pengtao Xie
AAAI 2015 Mining User Interests from Personal Photos Pengtao Xie, Yulong Pei, Yuan Xie, Eric P. Xing
UAI 2013 Integrating Document Clustering and Topic Modeling Pengtao Xie, Eric P. Xing
IJCAI 2013 Multi-Modal Distance Metric Learning Pengtao Xie, Eric P. Xing