Xie, Xing

85 publications

NeurIPS 2025 Counterfactual Reasoning for Steerable Pluralistic Value Alignment of Large Language Models Hanze Guo, Jing Yao, Xiao Zhou, Xiaoyuan Yi, Xing Xie
ICML 2025 Raising the Bar: Investigating the Values of Large Language Models via Generative Evolving Testing Han Jiang, Xiaoyuan Yi, Zhihua Wei, Ziang Xiao, Shu Wang, Xing Xie
NeurIPS 2025 Unveiling the Learning Mind of Language Models: A Cognitive Framework and Empirical Study Zhengyu Hu, Jianxun Lian, Zheyuan Xiao, Seraphina Zhang, Tianfu Wang, Nicholas Jing Yuan, Xing Xie, Hui Xiong
ICML 2024 A General Framework for Learning from Weak Supervision Hao Chen, Jindong Wang, Lei Feng, Xiang Li, Yidong Wang, Xing Xie, Masashi Sugiyama, Rita Singh, Bhiksha Raj
AAAI 2024 Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential Recommendations Lei Li, Jianxun Lian, Xiao Zhou, Xing Xie
NeurIPS 2024 CLAVE: An Adaptive Framework for Evaluating Values of LLM Generated Responses Jing Yao, Xiaoyuan Yi, Xing Xie
ICML 2024 CompeteAI: Understanding the Competition Dynamics of Large Language Model-Based Agents Qinlin Zhao, Jindong Wang, Yixuan Zhang, Yiqiao Jin, Kaijie Zhu, Hao Chen, Xing Xie
ICMLW 2024 CompeteAI: Understanding the Competition Dynamics of Large Language Model-Based Agents Qinlin Zhao, Jindong Wang, Yixuan Zhang, Yiqiao Jin, Kaijie Zhu, Hao Chen, Xing Xie
NeurIPS 2024 CultureLLM: Incorporating Cultural Differences into Large Language Models Cheng Li, Mengzhuo Chen, Jindong Wang, Sunayana Sitaram, Xing Xie
NeurIPS 2024 CulturePark: Boosting Cross-Cultural Understanding in Large Language Models Cheng Li, Damien Teney, Linyi Yang, Qingsong Wen, Xing Xie, Jindong Wang
ICLR 2024 Denevil: Towards Deciphering and Navigating the Ethical Values of Large Language Models via Instruction Learning Shitong Duan, Xiaoyuan Yi, Peng Zhang, Tun Lu, Xing Xie, Ning Gu
ICLR 2024 DyVal: Dynamic Evaluation of Large Language Models for Reasoning Tasks Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, Xing Xie
ICML 2024 Dynamic Evaluation of Large Language Models by Meta Probing Agents Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, Xing Xie
NeurIPS 2024 ERBench: An Entity-Relationship Based Automatically Verifiable Hallucination Benchmark for Large Language Models Jio Oh, Soyeon Kim, Junseok Seo, Jindong Wang, Ruochen Xu, Xing Xie, Steven Euijong Whang
CPAL 2024 FIXED: Frustratingly Easy Domain Generalization with Mixup Wang Lu, Jindong Wang, Han Yu, Lei Huang, Xiang Zhang, Yiqiang Chen, Xing Xie
ICLR 2024 Foundation Model-Oriented Robustness: Robust Image Model Evaluation with Pretrained Models Peiyan Zhang, Haoyang Liu, Chaozhuo Li, Xing Xie, Sunghun Kim, Haohan Wang
ECCV 2024 IRGen: Generative Modeling for Image Retrieval Yidan Zhang, Ting Zhang, Dong Chen, Yujing Wang, Qi Chen, Xing Xie, Hao Sun, Weiwei Deng, Qi Zhang, Fan Yang, Mao Yang, Qingmin Liao, Jingdong Wang, Baining Guo
NeurIPS 2024 Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations Hao Chen, Ankit Shah, Jindong Wang, Ran Tao, Yidong Wang, Xiang Li, Xing Xie, Masashi Sugiyama, Rita Singh, Bhiksha Raj
DMLR 2024 On Catastrophic Inheritance of Large Foundation Models Hao Chen, Bhiksha Raj, Xing Xie, Jindong Wang
IJCAI 2024 On the Essence and Prospect: An Investigation of Alignment Approaches for Big Models Xinpeng Wang, Shitong Duan, Xiaoyuan Yi, Jing Yao, Shanlin Zhou, Zhihua Wei, Peng Zhang, Dongkuan Xu, Maosong Sun, Xing Xie
ICLR 2024 PandaLM: An Automatic Evaluation Benchmark for LLM Instruction Tuning Optimization Yidong Wang, Zhuohao Yu, Wenjin Yao, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang, Rui Xie, Jindong Wang, Xing Xie, Wei Ye, Shikun Zhang, Yue Zhang
ICML 2024 Position: TrustLLM: Trustworthiness in Large Language Models Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Hanchi Sun, Zhengliang Liu, Yixin Liu, Yijue Wang, Zhikun Zhang, Bertie Vidgen, Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric P. Xing, Furong Huang, Hao Liu, Heng Ji, Hongyi Wang, Huan Zhang, Huaxiu Yao, Manolis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei, Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, Jindong Wang, Joaquin Vanschoren, John Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Lifang He, Lifu Huang, Michael Backes, Neil Zhenqiang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan Gu, Ran Xu, Rex Ying, Shuiwang Ji, Suman Jana, Tianlong Chen, Tianming Liu, Tianyi Zhou, William Yang Wang, Xiang Li, Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yanfang Ye, Yinzhi Cao, Yong Chen, Yue Zhao
MLOSS 2024 PromptBench: A Unified Library for Evaluation of Large Language Models Kaijie Zhu, Qinlin Zhao, Hao Chen, Jindong Wang, Xing Xie
ECCV 2024 SpecFormer: Guarding Vision Transformer Robustness via Maximum Singular Value Penalization Xixu Hu, Runkai Zheng, Jindong Wang, Cheuk Hang Leung, Qi Wu, Xing Xie
ICLR 2024 Supervised Knowledge Makes Large Language Models Better In-Context Learners Linyi Yang, Shuibai Zhang, Zhuohao Yu, Guangsheng Bao, Yidong Wang, Jindong Wang, Ruochen Xu, Wei Ye, Xing Xie, Weizhu Chen, Yue Zhang
ICML 2024 The Good, the Bad, and Why: Unveiling Emotions in Generative AI Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu, Xinyi Wang, Wenxin Hou, Jianxun Lian, Fang Luo, Qiang Yang, Xing Xie
ICLR 2024 Understanding and Mitigating the Label Noise in Pre-Training on Downstream Tasks Hao Chen, Jindong Wang, Ankit Shah, Ran Tao, Hongxin Wei, Xing Xie, Masashi Sugiyama, Bhiksha Raj
NeurIPSW 2024 ZOOPFL: Exploring Black-Box Foundation Models for Personalized Federated Learning Wang Lu, Hao Yu, Jindong Wang, Damien Teney, Haohan Wang, Yao Zhu, Yiqiang Chen, Qiang Yang, Xing Xie, Xiangyang Ji
NeurIPS 2023 A Comprehensive Study on Text-Attributed Graphs: Benchmarking and Rethinking Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin, Peiyan Zhang, Weihao Han, Hao Sun, Weiwei Deng, Qi Zhang, Lichao Sun, Xing Xie, Senzhang Wang
NeurIPS 2023 Bayesian Active Causal Discovery with Multi-Fidelity Experiments Zeyu Zhang, Chaozhuo Li, Xu Chen, Xing Xie
NeurIPS 2023 Cross-Links Matter for Link Prediction: Rethinking the Debiased GNN from a Data Perspective Zihan Luo, Hong Huang, Jianxun Lian, Xiran Song, Xing Xie, Hai Jin
IJCAI 2023 FedSampling: A Better Sampling Strategy for Federated Learning Tao Qi, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, Xing Xie
ICLRW 2023 Fedclip: Fast Generalization and Personalization for CLIP in Federated Learning Wang Lu, Xixu Hu, Jindong Wang, Xing Xie
ICLR 2023 FreeMatch: Self-Adaptive Thresholding for Semi-Supervised Learning Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu, Jindong Wang, Marios Savvides, Takahiro Shinozaki, Bhiksha Raj, Bernt Schiele, Xing Xie
ICCV 2023 Improving Generalization of Adversarial Training via Robust Critical Fine-Tuning Kaijie Zhu, Xixu Hu, Jindong Wang, Xing Xie, Ge Yang
IJCAI 2023 KEST: Kernel Distance Based Efficient Self-Training for Improving Controllable Text Generation Yuxi Feng, Xiaoyuan Yi, Laks V. S. Lakshmanan, Xing Xie
ICLR 2023 Learning on Large-Scale Text-Attributed Graphs via Variational Inference Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, Jian Tang
NeurIPS 2023 Model-Enhanced Vector Index Hailin Zhang, Yujing Wang, Qi Chen, Ruiheng Chang, Ting Zhang, Ziming Miao, Yingyan Hou, Yang Ding, Xupeng Miao, Haonan Wang, Bochen Pang, Yuefeng Zhan, Hao Sun, Weiwei Deng, Qi Zhang, Fan Yang, Xing Xie, Mao Yang, Bin Cui
ICLRW 2023 On the Robustness of ChatGPT: An Adversarial and Out-of-Distribution Perspective Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen, Runkai Zheng, Yidong Wang, Linyi Yang, Wei Ye, Haojun Huang, Xiubo Geng, Binxing Jiao, Yue Zhang, Xing Xie
ICLR 2023 Out-of-Distribution Representation Learning for Time Series Classification Wang Lu, Jindong Wang, Xinwei Sun, Yiqiang Chen, Xing Xie
AAAI 2023 Prototypical Fine-Tuning: Towards Robust Performance Under Varying Data Sizes Yiqiao Jin, Xiting Wang, Yaru Hao, Yizhou Sun, Xing Xie
ICLR 2023 SoftMatch: Addressing the Quantity-Quality Tradeoff in Semi-Supervised Learning Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing Xie, Bhiksha Raj, Marios Savvides
ICCV 2023 Towards Attack-Tolerant Federated Learning via Critical Parameter Analysis Sungwon Han, Sungwon Park, Fangzhao Wu, Sundong Kim, Bin Zhu, Xing Xie, Meeyoung Cha
ICLR 2023 Unified Detoxifying and Debiasing in Language Generation via Inference-Time Adaptive Optimization Zonghan Yang, Xiaoyuan Yi, Peng Li, Yang Liu, Xing Xie
NeurIPS 2023 V-InFoR: A Robust Graph Neural Networks Explainer for Structurally Corrupted Graphs Senzhang Wang, Jun Yin, Chaozhuo Li, Xing Xie, Jianxin Wang
NeurIPS 2022 A Neural Corpus Indexer for Document Retrieval Yujing Wang, Yingyan Hou, Haonan Wang, Ziming Miao, Shibin Wu, Qi Chen, Yuqing Xia, Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Sun, Weiwei Deng, Qi Zhang, Mao Yang
IJCAI 2022 Clickbait Detection via Contrastive Variational Modelling of Text and Label Xiaoyuan Yi, Jiarui Zhang, Wenhao Li, Xiting Wang, Xing Xie
TMLR 2022 Domain-Invariant Feature Exploration for Domain Generalization Wang Lu, Jindong Wang, Haoliang Li, Yiqiang Chen, Xing Xie
NeurIPS 2022 FairVFL: A Fair Vertical Federated Learning Framework with Contrastive Adversarial Learning Tao Qi, Fangzhao Wu, Chuhan Wu, Lingjuan Lyu, Tong Xu, Hao Liao, Zhongliang Yang, Yongfeng Huang, Xing Xie
ECCV 2022 FedX: Unsupervised Federated Learning with Cross Knowledge Distillation Sungwon Han, Sungwon Park, Fangzhao Wu, Sundong Kim, Chuhan Wu, Xing Xie, Meeyoung Cha
ICML 2022 HousE: Knowledge Graph Embedding with Householder Parameterization Rui Li, Jianan Zhao, Chaozhuo Li, Di He, Yiqi Wang, Yuming Liu, Hao Sun, Senzhang Wang, Weiwei Deng, Yanming Shen, Xing Xie, Qi Zhang
NeurIPS 2022 Self-Explaining Deep Models with Logic Rule Reasoning Seungeon Lee, Xiting Wang, Sungwon Han, Xiaoyuan Yi, Xing Xie, Meeyoung Cha
AAAI 2022 Towards Fine-Grained Reasoning for Fake News Detection Yiqiao Jin, Xiting Wang, Ruichao Yang, Yizhou Sun, Wei Wang, Hao Liao, Xing Xie
NeurIPS 2022 USB: A Unified Semi-Supervised Learning Benchmark for Classification Yidong Wang, Hao Chen, Yue Fan, Wang Sun, Ran Tao, Wenxin Hou, Renjie Wang, Linyi Yang, Zhi Zhou, Lan-Zhe Guo, Heli Qi, Zhen Wu, Yu-Feng Li, Satoshi Nakamura, Wei Ye, Marios Savvides, Bhiksha Raj, Takahiro Shinozaki, Bernt Schiele, Jindong Wang, Xing Xie, Yue Zhang
AAAI 2021 Fairness-Aware News Recommendation with Decomposed Adversarial Learning Chuhan Wu, Fangzhao Wu, Xiting Wang, Yongfeng Huang, Xing Xie
NeurIPS 2021 GraphFormers: GNN-Nested Transformers for Representation Learning on Textual Graph Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh, Guangzhong Sun, Xing Xie
IJCAI 2021 Learning Groupwise Explanations for Black-Box Models Jingyue Gao, Xiting Wang, Yasha Wang, Yulan Yan, Xing Xie
IJCAI 2021 User-as-Graph: User Modeling with Heterogeneous Graph Pooling for News Recommendation Chuhan Wu, Fangzhao Wu, Yongfeng Huang, Xing Xie
NeurIPS 2020 Sampling-Decomposable Generative Adversarial Recommender Binbin Jin, Defu Lian, Zheng Liu, Qi Liu, Jianhui Ma, Xing Xie, Enhong Chen
IJCAI 2020 Towards Explainable Conversational Recommendation Zhongxia Chen, Xiting Wang, Xing Xie, Mehul Parsana, Akshay Soni, Xiang Ao, Enhong Chen
IJCAI 2019 Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommendation Zeping Yu, Jianxun Lian, Ahmad Mahmoody, Gongshen Liu, Xing Xie
IJCAI 2019 Co-Attentive Multi-Task Learning for Explainable Recommendation Zhongxia Chen, Xiting Wang, Xing Xie, Tong Wu, Guoqing Bu, Yining Wang, Enhong Chen
IJCAI 2019 Collaborative Metric Learning with Memory Network for Multi-Relational Recommender Systems Xiao Zhou, Danyang Liu, Jianxun Lian, Xing Xie
AAAI 2019 DRr-Net: Dynamic Re-Read Network for Sentence Semantic Matching Kun Zhang, Guangyi Lv, Linyuan Wang, Le Wu, Enhong Chen, Fangzhao Wu, Xing Xie
AAAI 2019 Explainable Recommendation Through Attentive Multi-View Learning Jingyue Gao, Xiting Wang, Yasha Wang, Xing Xie
IJCAI 2019 Hi-Fi Ark: Deep User Representation via High-Fidelity Archive Network Zheng Liu, Yu Xing, Fangzhao Wu, Mingxiao An, Xing Xie
IJCAI 2019 Neural News Recommendation with Attentive Multi-View Learning Chuhan Wu, Fangzhao Wu, Mingxiao An, Jianqiang Huang, Yongfeng Huang, Xing Xie
IJCAI 2019 Personalized Multimedia Item and Key Frame Recommendation Le Wu, Lei Chen, Yonghui Yang, Richang Hong, Yong Ge, Xing Xie, Meng Wang
AAAI 2019 Session-Based Recommendation with Graph Neural Networks Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, Tieniu Tan
ICML 2019 Towards a Deep and Unified Understanding of Deep Neural Models in NLP Chaoyu Guan, Xiting Wang, Quanshi Zhang, Runjin Chen, Di He, Xing Xie
AAAI 2018 CD-CNN: A Partially Supervised Cross-Domain Deep Learning Model for Urban Resident Recognition Jingyuan Wang, Xu He, Ze Wang, Junjie Wu, Nicholas Jing Yuan, Xing Xie, Zhang Xiong
AAAI 2018 GraphGAN: Graph Representation Learning with Generative Adversarial Nets Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, Minyi Guo
IJCAI 2018 MOBA-Slice: A Time Slice Based Evaluation Framework of Relative Advantage Between Teams in MOBA Games Lijun Yu, Dawei Zhang, Xiangqun Chen, Xing Xie
IJCAI 2018 Predicting the Spatio-Temporal Evolution of Chronic Diseases in Population with Human Mobility Data Yingzi Wang, Xiao Zhou, Anastasios Noulas, Cecilia Mascolo, Xing Xie, Enhong Chen
IJCAI 2018 Sequential Recommender System Based on Hierarchical Attention Networks Haochao Ying, Fuzhen Zhuang, Fuzheng Zhang, Yanchi Liu, Guandong Xu, Xing Xie, Hui Xiong, Jian Wu
IJCAI 2018 Towards Better Representation Learning for Personalized News Recommendation: A Multi-Channel Deep Fusion Approach Jianxun Lian, Fuzheng Zhang, Xing Xie, Guangzhong Sun
IJCAI 2017 App Download Forecasting: An Evolutionary Hierarchical Competition Approach Yingzi Wang, Nicholas Jing Yuan, Yu Sun, Chuan Qin, Xing Xie
IJCAI 2017 Understanding People Lifestyles: Construction of Urban Movement Knowledge Graph from GPS Trajectory Chenyi Zhuang, Nicholas Jing Yuan, Ruihua Song, Xing Xie, Qiang Ma
AAAI 2016 Little Is Much: Bridging Cross-Platform Behaviors Through Overlapped Crowds Meng Jiang, Peng Cui, Nicholas Jing Yuan, Xing Xie, Shiqiang Yang
IJCAI 2016 Sparse Bayesian Content-Aware Collaborative Filtering for Implicit Feedback Defu Lian, Yong Ge, Nicholas Jing Yuan, Xing Xie, Hui Xiong
AAAI 2015 A Simulator of Human Emergency Mobility Following Disasters: Knowledge Transfer from Big Disaster Data Xuan Song, Quanshi Zhang, Yoshihide Sekimoto, Ryosuke Shibasaki, Nicholas Jing Yuan, Xing Xie
AAAI 2015 Content-Based Collaborative Filtering for News Topic Recommendation Zhongqi Lu, Zhicheng Dou, Jianxun Lian, Xing Xie, Qiang Yang
IJCAI 2015 Mobile Query Recommendation via Tensor Function Learning Zhou Zhao, Ruihua Song, Xing Xie, Xiaofei He, Yueting Zhuang
AAAI 2010 Collaborative Filtering Meets Mobile Recommendation: A User-Centered Approach Vincent Wenchen Zheng, Bin Cao, Yu Zheng, Xing Xie, Qiang Yang
CVPR 2009 Vocabulary Hierarchy Optimization for Effective and Transferable Retrieval Rongrong Ji, Xing Xie, Hongxun Yao, Wei-Ying Ma