Xu, Tingyang

33 publications

ICML 2025 IBCircuit: Towards Holistic Circuit Discovery with Information Bottleneck Tian Bian, Yifan Niu, Chaohao Yuan, Chengzhi Piao, Bingzhe Wu, Long-Kai Huang, Yu Rong, Tingyang Xu, Hong Cheng, Jia Li
ICLR 2025 InversionGNN: A Dual Path Network for Multi-Property Molecular Optimization Yifan Niu, Ziqi Gao, Tingyang Xu, Yang Liu, Yatao Bian, Yu Rong, Junzhou Huang, Jia Li
ICML 2025 Large Language-Geometry Model: When LLM Meets Equivariance Zongzhao Li, Jiacheng Cen, Bing Su, Tingyang Xu, Yu Rong, Deli Zhao, Wenbing Huang
NeurIPS 2025 MOF-BFN: Metal-Organic Frameworks Structure Prediction via Bayesian Flow Networks Rui Jiao, Hanlin Wu, Wenbing Huang, Yuxuan Song, Yawen Ouyang, Yu Rong, Tingyang Xu, Pengju Wang, Hao Zhou, Wei-Ying Ma, Jingjing Liu, Yang Liu
NeurIPS 2025 Non-Stationary Equivariant Graph Neural Networks for Physical Dynamics Simulation Chaohao Yuan, Maoji Wen, Ercan Engin Kuruoglu, Yang Liu, Jia Li, Tingyang Xu, Deli Zhao, Hong Cheng, Yu Rong
NeurIPS 2025 Universally Invariant Learning in Equivariant GNNs Jiacheng Cen, Anyi Li, Ning Lin, Tingyang Xu, Yu Rong, Deli Zhao, Zihe Wang, Wenbing Huang
ICLR 2024 SEGNO: Generalizing Equivariant Graph Neural Networks with Physical Inductive Biases Yang Liu, Jiashun Cheng, Haihong Zhao, Tingyang Xu, Peilin Zhao, Fugee Tsung, Jia Li, Yu Rong
ICMLW 2024 Step-on-Feet Tuning: Scaling Self-Alignment of LLMs via Bootstrapping Haoyu Wang, Guozheng Ma, Ziqiao Meng, Zeyu Qin, Li Shen, Zhong Zhang, Bingzhe Wu, Liu Liu, Yatao Bian, Tingyang Xu, Xueqian Wang, Peilin Zhao
IJCAI 2024 Towards Geometric Normalization Techniques in SE(3) Equivariant Graph Neural Networks for Physical Dynamics Simulations Ziqiao Meng, Liang Zeng, Zixing Song, Tingyang Xu, Peilin Zhao, Irwin King
AAAI 2023 DrugOOD: Out-of-Distribution Dataset Curator and Benchmark for AI-Aided Drug Discovery - A Focus on Affinity Prediction Problems with Noise Annotations Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Lanqing Li, Long-Kai Huang, Tingyang Xu, Yu Rong, Jie Ren, Ding Xue, Houtim Lai, Wei Liu, Junzhou Huang, Shuigeng Zhou, Ping Luo, Peilin Zhao, Yatao Bian
AAAI 2023 Handling Missing Data via Max-Entropy Regularized Graph Autoencoder Ziqi Gao, Yifan Niu, Jiashun Cheng, Jianheng Tang, Lanqing Li, Tingyang Xu, Peilin Zhao, Fugee Tsung, Jia Li
AAAI 2023 Human Mobility Modeling During the COVID-19 Pandemic via Deep Graph Diffusion Infomax Yang Liu, Yu Rong, Zhuoning Guo, Nuo Chen, Tingyang Xu, Fugee Tsung, Jia Li
AAAI 2023 MDM: Molecular Diffusion Model for 3D Molecule Generation Lei Huang, Hengtong Zhang, Tingyang Xu, Ka-Chun Wong
TMLR 2023 Noise-Robust Graph Learning by Estimating and Leveraging Pairwise Interactions Xuefeng Du, Tian Bian, Yu Rong, Bo Han, Tongliang Liu, Tingyang Xu, Wenbing Huang, Yixuan Li, Junzhou Huang
ICLRW 2022 Diversified Multiscale Graph Learning with Graph Self-Correction Yuzhao Chen, Yatao Bian, Jiying Zhang, Xi Xiao, Tingyang Xu, Yu Rong
ICLR 2022 Energy-Based Learning for Cooperative Games, with Applications to Valuation Problems in Machine Learning Yatao Bian, Yu Rong, Tingyang Xu, Jiaxiang Wu, Andreas Krause, Junzhou Huang
NeurIPS 2022 Equivariant Graph Hierarchy-Based Neural Networks Jiaqi Han, Wenbing Huang, Tingyang Xu, Yu Rong
NeurIPSW 2022 Equivariant Graph Hierarchy-Based Neural Networks Jiaqi Han, Yu Rong, Tingyang Xu, Wenbing Huang
ICLR 2022 Equivariant Graph Mechanics Networks with Constraints Wenbing Huang, Jiaqi Han, Yu Rong, Tingyang Xu, Fuchun Sun, Junzhou Huang
LoG 2022 Jointly Modelling Uncertainty and Diversity for Active Molecular Property Prediction Kuangqi Zhou, Kaixin Wang, Jian Tang, Jiashi Feng, Bryan Hooi, Peilin Zhao, Tingyang Xu, Xinchao Wang
NeurIPS 2022 Learning Neural Set Functions Under the Optimal Subset Oracle Zijing Ou, Tingyang Xu, Qinliang Su, Yingzhen Li, Peilin Zhao, Yatao Bian
ICML 2022 Local Augmentation for Graph Neural Networks Songtao Liu, Rex Ying, Hanze Dong, Lanqing Li, Tingyang Xu, Yu Rong, Peilin Zhao, Junzhou Huang, Dinghao Wu
ICLR 2021 Graph Information Bottleneck for Subgraph Recognition Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, Ran He
NeurIPS 2021 Not All Low-Pass Filters Are Robust in Graph Convolutional Networks Heng Chang, Yu Rong, Tingyang Xu, Yatao Bian, Shiji Zhou, Xin Wang, Junzhou Huang, Wenwu Zhu
IJCAI 2021 On Self-Distilling Graph Neural Network Yuzhao Chen, Yatao Bian, Xi Xiao, Yu Rong, Tingyang Xu, Junzhou Huang
AAAI 2020 A Restricted Black-Box Adversarial Framework Towards Attacking Graph Embedding Models Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, Wenwu Zhu, Junzhou Huang
NeurIPS 2020 Deep Multimodal Fusion by Channel Exchanging Yikai Wang, Wenbing Huang, Fuchun Sun, Tingyang Xu, Yu Rong, Junzhou Huang
ICLR 2020 DropEdge: Towards Deep Graph Convolutional Networks on Node Classification Yu Rong, Wenbing Huang, Tingyang Xu, Junzhou Huang
AAAI 2020 Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks Tian Bian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wenbing Huang, Yu Rong, Junzhou Huang
NeurIPS 2020 Self-Supervised Graph Transformer on Large-Scale Molecular Data Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, Junzhou Huang
NeurIPS 2019 DTWNet: A Dynamic Time Warping Network Xingyu Cai, Tingyang Xu, Jinfeng Yi, Junzhou Huang, Sanguthevar Rajasekaran
AAAI 2018 Latent Sparse Modeling of Longitudinal Multi-Dimensional Data Ko-Shin Chen, Tingyang Xu, Jinbo Bi
ICML 2015 Multi-View Sparse Co-Clustering via Proximal Alternating Linearized Minimization Jiangwen Sun, Jin Lu, Tingyang Xu, Jinbo Bi