Xu, Ziping

14 publications

WACV 2024 CryoRL: Reinforcement Learning Enables Efficient Cryo-EM Data Collection Quanfu Fan, Yilai Li, Yuguang Yao, John Cohn, Sijia Liu, Ziping Xu, Seychelle Vos, Michael Cianfrocco
AISTATS 2024 Online Learning in Bandits with Predicted Context Yongyi Guo, Ziping Xu, Susan Murphy
ICLR 2024 Sample Efficient Myopic Exploration Through Multitask Reinforcement Learning with Diverse Tasks Ziping Xu, Zifan Xu, Runxuan Jiang, Peter Stone, Ambuj Tewari
NeurIPSW 2023 Coupling Semi-Supervised Learning with Reinforcement Learning for Better Decision Making --- an Application to Cryo-EM Data Collection Ziping Xu, Quanfu Fan, Yilai Li, Emma Rose Lee, John Maxwell Cohn, Ambuj Tewari, Seychelle M Vos, Michael Cianfrocco
NeurIPS 2022 Adaptive Sampling for Discovery Ziping Xu, Eunjae Shim, Ambuj Tewari, Paul Zimmerman
NeurIPSW 2022 Constrained MDPs Can Be Solved by Eearly-Termination with Recurrent Models Hao Sun, Ziping Xu, Zhenghao Peng, Meng Fang, Taiyi Wang, Bo Dai, Bolei Zhou
NeurIPSW 2022 MOPA: A Minimalist Off-Policy Approach to Safe-RL Hao Sun, Ziping Xu, Zhenghao Peng, Meng Fang, Bo Dai, Bolei Zhou
ICML 2022 On the Statistical Benefits of Curriculum Learning Ziping Xu, Ambuj Tewari
NeurIPSW 2022 Supervised Q-Learning Can Be a Strong Baseline for Continuous Control Hao Sun, Ziping Xu, Meng Fang, Bolei Zhou
NeurIPSW 2022 Supervised Q-Learning for Continuous Control Hao Sun, Ziping Xu, Taiyi Wang, Meng Fang, Bolei Zhou
AISTATS 2021 Decision Making Problems with Funnel Structure: A Multi-Task Learning Approach with Application to Email Marketing Campaigns Ziping Xu, Amirhossein Meisami, Ambuj Tewari
NeurIPS 2021 Representation Learning Beyond Linear Prediction Functions Ziping Xu, Ambuj Tewari
NeurIPS 2020 Reinforcement Learning in Factored MDPs: Oracle-Efficient Algorithms and Tighter Regret Bounds for the Non-Episodic Setting Ziping Xu, Ambuj Tewari
NeurIPS 2020 TorsionNet: A Reinforcement Learning Approach to Sequential Conformer Search Tarun Gogineni, Ziping Xu, Exequiel Punzalan, Runxuan Jiang, Joshua Kammeraad, Ambuj Tewari, Paul Zimmerman