Yamada, Makoto

57 publications

ICLR 2025 Fast Unsupervised Ground Metric Learning with Tree-Wasserstein Distance Kira Michaela Düsterwald, Samo Hromadka, Makoto Yamada
ICLR 2025 Learning Structured Representations by Embedding Class Hierarchy with Fast Optimal Transport Siqi Zeng, Sixian Du, Makoto Yamada, Han Zhao
TMLR 2025 Necessary and Sufficient Watermark for Large Language Models Yuki Takezawa, Ryoma Sato, Han Bao, Kenta Niwa, Makoto Yamada
ICLRW 2025 On Verbalized Confidence Scores for LLMs Daniel Yang, Yao-Hung Hubert Tsai, Makoto Yamada
ICLR 2025 PhiNets: Brain-Inspired Non-Contrastive Learning Based on Temporal Prediction Hypothesis Satoki Ishikawa, Makoto Yamada, Han Bao, Yuki Takezawa
AISTATS 2024 Fast 1-Wasserstein Distance Approximations Using Greedy Strategies Guillaume Houry, Han Bao, Han Zhao, Makoto Yamada
WACV 2024 Implicit Neural Representation for Change Detection Peter Naylor, Diego Di Carlo, Arianna Traviglia, Makoto Yamada, Marco Fiorucci
NeurIPS 2024 Learning Structured Representations with Hyperbolic Embeddings Aditya Sinha, Siqi Zeng, Makoto Yamada, Han Zhao
NeurIPS 2024 Parameter-Free Clipped Gradient Descent Meets Polyak Yuki Takezawa, Han Bao, Ryoma Sato, Kenta Niwa, Makoto Yamada
TMLR 2024 Stealthy Backdoor Attack via Confidence-Driven Sampling Pengfei He, Yue Xing, Han Xu, Jie Ren, Yingqian Cui, Shenglai Zeng, Jiliang Tang, Makoto Yamada, Mohammad Sabokrou
ICLR 2024 Structural Fairness-Aware Active Learning for Graph Neural Networks Haoyu Han, Xiaorui Liu, Li Ma, MohamadAli Torkamani, Hui Liu, Jiliang Tang, Makoto Yamada
NeurIPSW 2024 Towards the Effect of Examples on In-Context Learning: A Theoretical Case Study Pengfei He, Yingqian Cui, Han Xu, Hui Liu, Makoto Yamada, Jiliang Tang, Yue Xing
ICMLW 2024 Unsupervised Ground Metric Learning with Tree Wasserstein Distance Kira Michaela Düsterwald, Makoto Yamada
NeurIPS 2023 Beyond Exponential Graph: Communication-Efficient Topologies for Decentralized Learning via Finite-Time Convergence Yuki Takezawa, Ryoma Sato, Han Bao, Kenta Niwa, Makoto Yamada
TMLR 2023 Momentum Tracking: Momentum Acceleration for Decentralized Deep Learning on Heterogeneous Data Yuki Takezawa, Han Bao, Kenta Niwa, Ryoma Sato, Makoto Yamada
AISTATS 2023 Nyström Method for Accurate and Scalable Implicit Differentiation Ryuichiro Hataya, Makoto Yamada
ICLR 2023 Robust Graph Dictionary Learning Weijie Liu, Jiahao Xie, Chao Zhang, Makoto Yamada, Nenggan Zheng, Hui Qian
AISTATS 2022 Feature Screening with Kernel Knockoffs Benjamin Poignard, Peter J. Naylor, Héctor Climente-González, Makoto Yamada
AISTATS 2022 Fixed Support Tree-Sliced Wasserstein Barycenter Yuki Takezawa, Ryoma Sato, Zornitsa Kozareva, Sujith Ravi, Makoto Yamada
TMLR 2022 Approximating 1-Wasserstein Distance with Trees Makoto Yamada, Yuki Takezawa, Ryoma Sato, Han Bao, Zornitsa Kozareva, Sujith Ravi
UAI 2022 Feature Selection for Discovering Distributional Treatment Effect Modifiers Yoichi Chikahara, Makoto Yamada, Hisashi Kashima
ECML-PKDD 2022 Feature-Robust Optimal Transport for High-Dimensional Data Mathis Petrovich, Chao Liang, Ryoma Sato, Yanbin Liu, Yao-Hung Hubert Tsai, Linchao Zhu, Yi Yang, Ruslan Salakhutdinov, Makoto Yamada
ICML 2022 Re-Evaluating Word Mover’s Distance Ryoma Sato, Makoto Yamada, Hisashi Kashima
AISTATS 2021 Flow-Based Alignment Approaches for Probability Measures in Different Spaces Tam Le, Nhat Ho, Makoto Yamada
NeurIPS 2021 Adversarial Regression with Doubly Non-Negative Weighting Matrices Tam Le, Truyen Nguyen, Makoto Yamada, Jose Blanchet, Viet Anh Nguyen
NeurIPS 2021 Dynamic Sasvi: Strong Safe Screening for Norm-Regularized Least Squares Hiroaki Yamada, Makoto Yamada
ECML-PKDD 2021 LSMI-Sinkhorn: Semi-Supervised Mutual Information Estimation with Optimal Transport Yanbin Liu, Makoto Yamada, Yao-Hung Hubert Tsai, Tam Le, Ruslan Salakhutdinov, Yi Yang
ICML 2021 Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search Vu Nguyen, Tam Le, Makoto Yamada, Michael A. Osborne
ICML 2021 Post-Selection Inference with HSIC-Lasso Tobias Freidling, Benjamin Poignard, Héctor Climente-González, Makoto Yamada
ICML 2021 Supervised Tree-Wasserstein Distance Yuki Takezawa, Ryoma Sato, Makoto Yamada
NeurIPS 2020 Fast Unbalanced Optimal Transport on a Tree Ryoma Sato, Makoto Yamada, Hisashi Kashima
AISTATS 2020 More Powerful Selective Kernel Tests for Feature Selection Jen Ning Lim, Makoto Yamada, Wittawat Jitkrittum, Yoshikazu Terada, Shigeyuki Matsui, Hidetoshi Shimodaira
NeurIPS 2020 Neural Methods for Point-Wise Dependency Estimation Yao-Hung Hubert Tsai, Han Zhao, Makoto Yamada, Louis-Philippe Morency, Ruslan Salakhutdinov
AISTATS 2020 Sparse Hilbert-Schmidt Independence Criterion Regression Benjamin Poignard, Makoto Yamada
AAAI 2020 Unsupervised Nonlinear Feature Selection from High-Dimensional Signed Networks Qiang Huang, Tingyu Xia, Huiyan Sun, Makoto Yamada, Yi Chang
NeurIPS 2019 Approximation Ratios of Graph Neural Networks for Combinatorial Problems Ryoma Sato, Makoto Yamada, Hisashi Kashima
NeurIPS 2019 Kernel Stein Tests for Multiple Model Comparison Jen Ning Lim, Makoto Yamada, Bernhard Schölkopf, Wittawat Jitkrittum
ACML 2019 Learning to Sample Hard Instances for Graph Algorithms Ryoma Sato, Makoto Yamada, Hisashi Kashima
ICLR 2019 Post Selection Inference with Incomplete Maximum Mean Discrepancy Estimator Makoto Yamada, Denny Wu, Yao-Hung Hubert Tsai, Hirofumi Ohta, Ruslan Salakhutdinov, Ichiro Takeuchi, Kenji Fukumizu
NeurIPS 2019 Tree-Sliced Variants of Wasserstein Distances Tam Le, Makoto Yamada, Kenji Fukumizu, Marco Cuturi
NeurIPS 2018 Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams Tam Le, Makoto Yamada
AISTATS 2018 Post Selection Inference with Kernels Makoto Yamada, Yuta Umezu, Kenji Fukumizu, Ichiro Takeuchi
AISTATS 2017 Localized Lasso for High-Dimensional Regression Makoto Yamada, Koh Takeuchi, Tomoharu Iwata, John Shawe-Taylor, Samuel Kaski
IJCAI 2016 A Robust Convex Formulation for Ensemble Clustering Junning Gao, Makoto Yamada, Samuel Kaski, Hiroshi Mamitsuka, Shanfeng Zhu
NeurIPS 2016 Multi-View Anomaly Detection via Robust Probabilistic Latent Variable Models Tomoharu Iwata, Makoto Yamada
IJCAI 2016 Timeline Summarization from Social Media with Life Cycle Models Yi Chang, Jiliang Tang, Dawei Yin, Makoto Yamada, Yan Liu
AISTATS 2015 Consistent Collective Matrix Completion Under Joint Low Rank Structure Suriya Gunasekar, Makoto Yamada, Dawei Yin, Yi Chang
MLJ 2014 Least-Squares Independence Regression for Non-Linear Causal Inference Under Non-Gaussian Noise Makoto Yamada, Masashi Sugiyama, Jun Sese
IJCAI 2013 Change-Point Detection with Feature Selection in High-Dimensional Time-Series Data Makoto Yamada, Akisato Kimura, Futoshi Naya, Hiroshi Sawada
ICML 2012 Information-Theoretic Semi-Supervised Metric Learning via Entropy Regularization Gang Niu, Bo Dai, Makoto Yamada, Masashi Sugiyama
ECCV 2012 No Bias Left Behind: Covariate Shift Adaptation for Discriminative 3D Pose Estimation Makoto Yamada, Leonid Sigal, Michalis Raptis
ACML 2011 Computationally Efficient Sufficient Dimension Reduction via Squared-Loss Mutual Information Makoto Yamada, Gang Niu, Jun Takagi, Masashi Sugiyama
AISTATS 2011 Cross-Domain Object Matching with Model Selection Makoto Yamada, Masashi Sugiyama
AAAI 2011 Direct Density-Ratio Estimation with Dimensionality Reduction via Hetero-Distributional Subspace Analysis Makoto Yamada, Masashi Sugiyama
ICML 2011 On Information-Maximization Clustering: Tuning Parameter Selection and Analytic Solution Masashi Sugiyama, Makoto Yamada, Manabu Kimura, Hirotaka Hachiya
NeurIPS 2011 Relative Density-Ratio Estimation for Robust Distribution Comparison Makoto Yamada, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Masashi Sugiyama
AAAI 2010 Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference Under Non-Gaussian Noise Makoto Yamada, Masashi Sugiyama