Yao, Yu

24 publications

ICLR 2025 A Conditional Independence Test in the Presence of Discretization Boyang Sun, Yu Yao, Guang-Yuan Hao, Yumou Qiu, Kun Zhang
ICML 2025 A Lens into Interpretable Transformer Mistakes via Semantic Dependency Ruo-Jing Dong, Yu Yao, Bo Han, Tongliang Liu
ICLR 2025 A Robust Method to Discover Causal or Anticausal Relation Yu Yao, Yang Zhou, Bo Han, Mingming Gong, Kun Zhang, Tongliang Liu
ICML 2025 A Sample Efficient Conditional Independence Test in the Presence of Discretization Boyang Sun, Yu Yao, Xinshuai Dong, Zongfang Liu, Tongliang Liu, Yumou Qiu, Kun Zhang
NeurIPS 2025 Aligning What Matters: Masked Latent Adaptation for Text-to-Audio-Video Generation Jiyang Zheng, Siqi Pan, Yu Yao, Zhaoqing Wang, Dadong Wang, Tongliang Liu
NeurIPS 2025 Can Dependencies Induced by LLM-Agent Workflows Be Trusted? Yu Yao, Yiliao Song, Yian Xie, Mengdan Fan, Mingyu Guo, Tongliang Liu
ICLR 2025 Chain-of-Focus Prompting: Leveraging Sequential Visual Cues to Prompt Large Autoregressive Vision Models Jiyang Zheng, Jialiang Shen, Yu Yao, Min Wang, Yang Yang, Dadong Wang, Tongliang Liu
ICLR 2025 Flow: Modularized Agentic Workflow Automation Boye Niu, Yiliao Song, Kai Lian, Yifan Shen, Yu Yao, Kun Zhang, Tongliang Liu
CVPRW 2025 Mamba-VA: A Mamba-Based Approach for Continuous Emotion Recognition in Valence-Arousal Space Yuheng Liang, Zheyu Wang, Feng Liu, Mingzhou Liu, Yu Yao
ICML 2025 Ranked from Within: Ranking Large Multimodal Models Without Labels Weijie Tu, Weijian Deng, Dylan Campbell, Yu Yao, Jiyang Zheng, Tom Gedeon, Tongliang Liu
ICML 2025 SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models Jiawei Zhang, Xuan Yang, Taiqi Wang, Yu Yao, Aleksandr Petiushko, Bo Li
CVPR 2025 SmartCLIP: Modular Vision-Language Alignment with Identification Guarantees Shaoan Xie, Lingjing Lingjing, Yujia Zheng, Yu Yao, Zeyu Tang, Eric P. Xing, Guangyi Chen, Kun Zhang
ICLR 2024 Enhancing Contrastive Learning for Ordinal Regression via Ordinal Content Preserved Data Augmentation Jiyang Zheng, Yu Yao, Bo Han, Dadong Wang, Tongliang Liu
NeurIPS 2024 Identifying Latent State-Transition Processes for Individualized Reinforcement Learning Yuewen Sun, Biwei Huang, Yu Yao, Donghuo Zeng, Xinshuai Dong, Songyao Jin, Boyang Sun, Roberto Legaspi, Kazushi Ikeda, Peter Spirtes, Kun Zhang
ICLR 2024 Improving Non-Transferable Representation Learning by Harnessing Content and Style Ziming Hong, Zhenyi Wang, Li Shen, Yu Yao, Zhuo Huang, Shiming Chen, Chuanwu Yang, Mingming Gong, Tongliang Liu
NeurIPS 2024 Learning the Latent Causal Structure for Modeling Label Noise Yexiong Lin, Yu Yao, Tongliang Liu
MLJ 2024 ProtoSimi: Label Correction for Fine-Grained Visual Categorization Jialiang Shen, Yu Yao, Shaoli Huang, Zhiyong Wang, Jing Zhang, Ruxing Wang, Jun Yu, Tongliang Liu
AAAI 2024 Rethinking the Paradigm of Content Constraints in Unpaired Image-to-Image Translation Xiuding Cai, Yaoyao Zhu, Dong Miao, Linjie Fu, Yu Yao
NeurIPS 2023 CS-Isolate: Extracting Hard Confident Examples by Content and Style Isolation Yexiong Lin, Yu Yao, Xiaolong Shi, Mingming Gong, Xu Shen, Dong Xu, Tongliang Liu
ICML 2023 Which Is Better for Learning with Noisy Labels: The Semi-Supervised Method or Modeling Label Noise? Yu Yao, Mingming Gong, Yuxuan Du, Jun Yu, Bo Han, Kun Zhang, Tongliang Liu
ICLR 2022 Rethinking Class-Prior Estimation for Positive-Unlabeled Learning Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Gang Niu, Masashi Sugiyama, Dacheng Tao
IJCAI 2021 Coupling Intent and Action for Pedestrian Crossing Behavior Prediction Yu Yao, Ella M. Atkins, Matthew Johnson-Roberson, Ram Vasudevan, Xiaoxiao Du
NeurIPS 2021 Instance-Dependent Label-Noise Learning Under a Structural Causal Model Yu Yao, Tongliang Liu, Mingming Gong, Bo Han, Gang Niu, Kun Zhang
NeurIPS 2020 Dual T: Reducing Estimation Error for Transition Matrix in Label-Noise Learning Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang Deng, Gang Niu, Masashi Sugiyama