ML Anthology
Authors
Search
About
Ying, Chengyang
14 publications
IJCAI
2025
Self-Consistent Model-Based Adaptation for Visual Reinforcement Learning
Xinning Zhou
,
Chengyang Ying
,
Yao Feng
,
Hang Su
,
Jun Zhu
ICML
2024
DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training
Zhongkai Hao
,
Chang Su
,
Songming Liu
,
Julius Berner
,
Chengyang Ying
,
Hang Su
,
Anima Anandkumar
,
Jian Song
,
Jun Zhu
ICML
2024
Fourier Controller Networks for Real-Time Decision-Making in Embodied Learning
Hengkai Tan
,
Songming Liu
,
Kai Ma
,
Chengyang Ying
,
Xingxing Zhang
,
Hang Su
,
Jun Zhu
NeurIPS
2024
PEAC: Unsupervised Pre-Training for Cross-Embodiment Reinforcement Learning
Chengyang Ying
,
Zhongkai Hao
,
Xinning Zhou
,
Xuezhou Xu
,
Hang Su
,
Xingxing Zhang
,
Jun Zhu
ICLR
2023
Bi-Level Physics-Informed Neural Networks for PDE Constrained Optimization Using Broyden's Hypergradients
Zhongkai Hao
,
Chengyang Ying
,
Hang Su
,
Jun Zhu
,
Jian Song
,
Ze Cheng
ICML
2023
GNOT: A General Neural Operator Transformer for Operator Learning
Zhongkai Hao
,
Zhengyi Wang
,
Hang Su
,
Chengyang Ying
,
Yinpeng Dong
,
Songming Liu
,
Ze Cheng
,
Jian Song
,
Jun Zhu
ICML
2023
NUNO: A General Framework for Learning Parametric PDEs with Non-Uniform Data
Songming Liu
,
Zhongkai Hao
,
Chengyang Ying
,
Hang Su
,
Ze Cheng
,
Jun Zhu
ICLR
2023
Offline Reinforcement Learning via High-Fidelity Generative Behavior Modeling
Huayu Chen
,
Cheng Lu
,
Chengyang Ying
,
Hang Su
,
Jun Zhu
IJCAI
2023
On the Reuse Bias in Off-Policy Reinforcement Learning
Chengyang Ying
,
Zhongkai Hao
,
Xinning Zhou
,
Hang Su
,
Dong Yan
,
Jun Zhu
NeurIPS
2022
A Unified Hard-Constraint Framework for Solving Geometrically Complex PDEs
Songming Liu
,
Hao Zhongkai
,
Chengyang Ying
,
Hang Su
,
Jun Zhu
,
Ze Cheng
ICML
2022
GSmooth: Certified Robustness Against Semantic Transformations via Generalized Randomized Smoothing
Zhongkai Hao
,
Chengyang Ying
,
Yinpeng Dong
,
Hang Su
,
Jian Song
,
Jun Zhu
IJCAI
2022
Towards Safe Reinforcement Learning via Constraining Conditional Value-at-Risk
Chengyang Ying
,
Xinning Zhou
,
Hang Su
,
Dong Yan
,
Ning Chen
,
Jun Zhu
ICMLW
2021
Strategically-Timed State-Observation Attacks on Deep Reinforcement Learning Agents
You Qiaoben
,
Xinning Zhou
,
Chengyang Ying
,
Jun Zhu
ICMLW
2021
Towards Safe Reinforcement Learning via Constraining Conditional Value at Risk
Chengyang Ying
,
Xinning Zhou
,
Dong Yan
,
Jun Zhu