ML Anthology
Authors
Search
About
Ying, Jiaxi
13 publications
ICML
2025
Fast and Provable Algorithms for Sparse PCA with Improved Sample Complexity
Jian-Feng Cai
,
Zhuozhi Xian
,
Jiaxi Ying
ICLR
2024
A Fast and Provable Algorithm for Sparse Phase Retrieval
Jian-Feng Cai
,
Yu Long
,
Ruixue Wen
,
Jiaxi Ying
NeurIPS
2024
Adaptive Passive-Aggressive Framework for Online Regression with Side Information
Runhao Shi
,
Jiaxi Ying
,
Daniel P. Palomar
ICML
2023
Adaptive Estimation of Graphical Models Under Total Positivity
Jiaxi Ying
,
José Vinı́cius De Miranda Cardoso
,
Daniel P. Palomar
NeurIPS
2023
Fast Projected Newton-like Method for Precision Matrix Estimation Under Total Positivity
Jian-Feng Cai
,
José Vinícius de Miranda Cardoso
,
Daniel Palomar
,
Jiaxi Ying
NeurIPS
2023
Learning Large-Scale MTP$_2$ Gaussian Graphical Models via Bridge-Block Decomposition
Xiwen Wang
,
Jiaxi Ying
,
Daniel Palomar
AAAI
2022
Efficient Algorithms for General Isotone Optimization
Xiwen Wang
,
Jiaxi Ying
,
José Vinícius de Miranda Cardoso
,
Daniel P. Palomar
NeurIPS
2022
Learning Bipartite Graphs: Heavy Tails and Multiple Components
José Vinícius de Miranda Cardoso
,
Jiaxi Ying
,
Daniel Palomar
AISTATS
2021
Minimax Estimation of Laplacian Constrained Precision Matrices
Jiaxi Ying
,
José Miranda Cardoso
,
Daniel Palomar
NeurIPS
2021
Graphical Models in Heavy-Tailed Markets
Jose Vinicius de Miranda Cardoso
,
Jiaxi Ying
,
Daniel Palomar
JMLR
2020
A Unified Framework for Structured Graph Learning via Spectral Constraints
Sandeep Kumar
,
Jiaxi Ying
,
José Vinícius de M. Cardoso
,
Daniel P. Palomar
NeurIPS
2020
Nonconvex Sparse Graph Learning Under Laplacian Constrained Graphical Model
Jiaxi Ying
,
José Vinícius de Miranda Cardoso
,
Daniel Palomar
NeurIPS
2019
Structured Graph Learning via Laplacian Spectral Constraints
Sandeep Kumar
,
Jiaxi Ying
,
Jose Vinicius de Miranda Cardoso
,
Daniel Palomar