Yuan, Mingxuan

35 publications

ICLR 2025 A Graph Enhanced Symbolic Discovery Framework for Efficient Logic Optimization Yinqi Bai, Jie Wang, Lei Chen, Zhihai Wang, Yufei Kuang, Mingxuan Yuan, Jianye Hao, Feng Wu
IJCAI 2025 A Survey of Optimization Modeling Meets LLMs: Progress and Future Directions Ziyang Xiao, Jingrong Xie, Lilin Xu, Shisi Guan, Jingyan Zhu, Xiongwei Han, Xiaojin Fu, WingYin Yu, Han Wu, Wei Shi, Qingcan Kang, Jiahui Duan, Tao Zhong, Mingxuan Yuan, Jia Zeng, Yuan Wang, Gang Chen, Dongxiang Zhang
ICML 2025 Accelerating Large Language Model Reasoning via Speculative Search Zhihai Wang, Jie Wang, Jilai Pan, Xilin Xia, Huiling Zhen, Mingxuan Yuan, Jianye Hao, Feng Wu
NeurIPS 2025 Accurate KV Cache Eviction via Anchor Direction Projection for Efficient LLM Inference Zijie Geng, Jie Wang, Ziqi Liu, Feng Ju, Yiming Li, Xing Li, Mingxuan Yuan, Jianye Hao, Defu Lian, Enhong Chen, Feng Wu
NeurIPS 2025 AttentionPredictor: Temporal Patterns Matter for KV Cache Compression Qingyue Yang, Jie Wang, Xing Li, Zhihai Wang, Chen Chen, Lei Chen, Xianzhi Yu, Wulong Liu, Jianye Hao, Mingxuan Yuan, Bin Li
NeurIPS 2025 Benchmarking End-to-End Performance of AI-Based Chip Placement Algorithms Zhihai Wang, Zijie Geng, Zhaojie Tu, Jie Wang, Yuxi Qian, Zhexuan Xu, Ziyan Liu, Siyuan Xu, Zhentao Tang, Shixiong Kai, Mingxuan Yuan, Jianye Hao, Bin Li, Feng Wu
ICLR 2025 Boosting Neural Combinatorial Optimization for Large-Scale Vehicle Routing Problems Fu Luo, Xi Lin, Yaoxin Wu, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, Qingfu Zhang
NeurIPS 2025 CORE: Collaborative Optimization with Reinforcement Learning and Evolutionary Algorithm for Floorplanning Pengyi Li, Shixiong Kai, Jianye Hao, Ruizhe Zhong, Hongyao Tang, Zhentao Tang, Mingxuan Yuan, Junchi Yan
ICLR 2025 Certifying Language Model Robustness with Fuzzed Randomized Smoothing: An Efficient Defense Against Backdoor Attacks Bowei He, Lihao Yin, Huiling Zhen, Jianping Zhang, Lanqing Hong, Mingxuan Yuan, Chen Ma
ICLR 2025 Circuit Transformer: A Transformer That Preserves Logical Equivalence Xihan Li, Xing Li, Lei Chen, Xing Zhang, Mingxuan Yuan, Jun Wang
ICLR 2025 Computing Circuits Optimization via Model-Based Circuit Genetic Evolution Zhihai Wang, Jie Wang, Xilin Xia, Dongsheng Zuo, Lei Chen, Yuzhe Ma, Jianye Hao, Mingxuan Yuan, Feng Wu
NeurIPS 2025 Dependency Matters: Enhancing LLM Reasoning with Explicit Knowledge Grounding Xiangyu Wen, Min Li, Junhua Huang, Jianyuan Zhong, Zhijian Xu, Zeju Li, Yongxiang Huang, Mingxuan Yuan, Qiang Xu
NeurIPS 2025 High-Performance Arithmetic Circuit Optimization via Differentiable Architecture Search Xilin Xia, Jie Wang, Wanbo Zhang, Zhihai Wang, Mingxuan Yuan, Jianye Hao, Feng Wu
ICML 2025 HyperTree Planning: Enhancing LLM Reasoning via Hierarchical Thinking Runquan Gui, Zhihai Wang, Jie Wang, Chi Ma, Huiling Zhen, Mingxuan Yuan, Jianye Hao, Defu Lian, Enhong Chen, Feng Wu
ICML 2025 KVTuner: Sensitivity-Aware Layer-Wise Mixed-Precision KV Cache Quantization for Efficient and Nearly Lossless LLM Inference Xing Li, Zeyu Xing, Yiming Li, Linping Qu, Hui-Ling Zhen, Yiwu Yao, Wulong Liu, Sinno Jialin Pan, Mingxuan Yuan
ICLR 2025 LaMPlace: Learning to Optimize Cross-Stage Metrics in Macro Placement Zijie Geng, Jie Wang, Ziyan Liu, Siyuan Xu, Zhentao Tang, Shixiong Kai, Mingxuan Yuan, Jianye Hao, Feng Wu
NeurIPS 2025 Preserving LLM Capabilities Through Calibration Data Curation: From Analysis to Optimization Bowei He, Lihao Yin, Huiling Zhen, Shuqi Liu, Han Wu, Xiaokun Zhang, Mingxuan Yuan, Chen Ma
ICLR 2025 SpaceGNN: Multi-Space Graph Neural Network for Node Anomaly Detection with Extremely Limited Labels Xiangyu Dong, Xingyi Zhang, Lei Chen, Mingxuan Yuan, Sibo Wang
IJCAI 2025 The Graph's Apprentice: Teaching an LLM Low-Level Knowledge for Circuit Quality Estimation Reza Moravej, Saurabh Bodhe, Zhanguang Zhang, Didier Chételat, Dimitrios Tsaras, Yingxue Zhang, Hui-Ling Zhen, Jianye Hao, Mingxuan Yuan
ICML 2024 A Circuit Domain Generalization Framework for Efficient Logic Synthesis in Chip Design Zhihai Wang, Lei Chen, Jie Wang, Yinqi Bai, Xing Li, Xijun Li, Mingxuan Yuan, Jianye Hao, Yongdong Zhang, Feng Wu
ICML 2024 A Hierarchical Adaptive Multi-Task Reinforcement Learning Framework for Multiplier Circuit Design Zhihai Wang, Jie Wang, Dongsheng Zuo, Ji Yunjie, Xilin Xia, Yuzhe Ma, Jianye Hao, Mingxuan Yuan, Yongdong Zhang, Feng Wu
ICML 2024 BetterV: Controlled Verilog Generation with Discriminative Guidance Zehua Pei, Huiling Zhen, Mingxuan Yuan, Yu Huang, Bei Yu
ICML 2024 DPN: Decoupling Partition and Navigation for Neural Solvers of Min-Max Vehicle Routing Problems Zhi Zheng, Shunyu Yao, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, Ke Tang
ICML 2024 Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Model Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, Qingfu Zhang
NeurIPS 2024 FlexPlanner: Flexible 3D Floorplanning via Deep Reinforcement Learning in Hybrid Action Space with Multi-Modality Representation Ruizhe Zhong, Xingbo Du, Shixiong Kai, Zhentao Tang, Siyuan Xu, Jianye Hao, Mingxuan Yuan, Junchi Yan
AAAI 2024 PreRoutGNN for Timing Prediction with Order Preserving Partition: Global Circuit Pre-Training, Local Delay Learning and Attentional Cell Modeling Ruizhe Zhong, Junjie Ye, Zhentao Tang, Shixiong Kai, Mingxuan Yuan, Jianye Hao, Junchi Yan
IJCAI 2024 Prompt Learning for Generalized Vehicle Routing Fei Liu, Xi Lin, Weiduo Liao, Zhenkun Wang, Qingfu Zhang, Xialiang Tong, Mingxuan Yuan
ICML 2024 Reinforcement Learning Within Tree Search for Fast Macro Placement Zijie Geng, Jie Wang, Ziyan Liu, Siyuan Xu, Zhentao Tang, Mingxuan Yuan, Jianye Hao, Yongdong Zhang, Feng Wu
NeurIPS 2024 Towards Next-Generation Logic Synthesis: A Scalable Neural Circuit Generation Framework Zhihai Wang, Jie Wang, Qingyue Yang, Yinqi Bai, Xing Li, Lei Chen, Jianye Hao, Mingxuan Yuan, Bin Li, Yongdong Zhang, Feng Wu
NeurIPS 2024 UDC: A Unified Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems Zhi Zheng, Changliang Zhou, Xialiang Tong, Mingxuan Yuan, Zhenkun Wang
ICLR 2023 Learning Cut Selection for Mixed-Integer Linear Programming via Hierarchical Sequence Model Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang, Feng Wu
ICLR 2023 ROCO: A General Framework for Evaluating Robustness of Combinatorial Optimization Solvers on Graphs Han Lu, Zenan Li, Runzhong Wang, Qibing Ren, Xijun Li, Mingxuan Yuan, Jia Zeng, Xiaokang Yang, Junchi Yan
ECML-PKDD 2022 Branch Ranking for Efficient Mixed-Integer Programming via Offline Ranking-Based Policy Learning Zeren Huang, Wenhao Chen, Weinan Zhang, Chuhan Shi, Furui Liu, Hui-Ling Zhen, Mingxuan Yuan, Jianye Hao, Yong Yu, Jun Wang
NeurIPS 2021 A Hierarchical Reinforcement Learning Based Optimization Framework for Large-Scale Dynamic Pickup and Delivery Problems Yi Ma, Xiaotian Hao, Jianye Hao, Jiawen Lu, Xing Liu, Tong Xialiang, Mingxuan Yuan, Zhigang Li, Jie Tang, Zhaopeng Meng
AAAI 2020 Block Hankel Tensor ARIMA for Multiple Short Time Series Forecasting Qiquan Shi, Jiaming Yin, Jiajun Cai, Andrzej Cichocki, Tatsuya Yokota, Lei Chen, Mingxuan Yuan, Jia Zeng