Zakynthinou, Lydia

12 publications

ICML 2025 Empirical Privacy Variance Yuzheng Hu, Fan Wu, Ruicheng Xian, Yuhang Liu, Lydia Zakynthinou, Pritish Kamath, Chiyuan Zhang, David Forsyth
NeurIPS 2024 Dimension-Free Private Mean Estimation for Anisotropic Distributions Yuval Dagan, Michael I. Jordan, Xuelin Yang, Lydia Zakynthinou, Nikita Zhivotovskiy
ICML 2023 From Robustness to Privacy and Back Hilal Asi, Jonathan Ullman, Lydia Zakynthinou
COLT 2023 Multitask Learning via Shared Features: Algorithms and Hardness Konstantina Bairaktari, Guy Blanc, Li-Yang Tan, Jonathan Ullman, Lydia Zakynthinou
NeurIPS 2021 Covariance-Aware Private Mean Estimation Without Private Covariance Estimation Gavin Brown, Marco Gaboardi, Adam Smith, Jonathan Ullman, Lydia Zakynthinou
AAAI 2021 Differentially Private Decomposable Submodular Maximization Anamay Chaturvedi, Huy Le Nguyen, Lydia Zakynthinou
COLT 2021 PAC-Bayes, MAC-Bayes and Conditional Mutual Information: Fast Rate Bounds That Handle General VC Classes Peter Grunwald, Thomas Steinke, Lydia Zakynthinou
ALT 2020 Efficient Private Algorithms for Learning Large-Margin Halfspaces Huy Lê Nguyễn, Jonathan Ullman, Lydia Zakynthinou
COLT 2020 Open Problem: Information Complexity of VC Learning Thomas Steinke, Lydia Zakynthinou
NeurIPS 2020 Private Identity Testing for High-Dimensional Distributions Clément L Canonne, Gautam Kamath, Audra McMillan, Jonathan Ullman, Lydia Zakynthinou
COLT 2020 Reasoning About Generalization via Conditional Mutual Information Thomas Steinke, Lydia Zakynthinou
NeurIPS 2018 Improved Algorithms for Collaborative PAC Learning Huy Nguyen, Lydia Zakynthinou